
Data-driven Studies on Social Networks: Privacy and Simulation

by

Yasanka Sameera Horawalavithana

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Adriana Iamnitchi, Ph.D.
John Skvoretz, Ph.D.

Lawrence O. Hall, Ph.D.
Giovanni L. Ciampaglia, Ph.D.

Michael Maness, Ph.D.

Date of Approval:
June 16, 2021

Keywords: Graphs, Machine Learning, Anonymization, Information Diffusion, Twitter

Copyright © 2021, Yasanka Sameera Horawalavithana



Dedication

This dissertation is dedicated to my parents, my wife and my lovely son. I am grateful to

have you in my life.



Acknowledgments

First, I want to thank my advisor Adriana Iamnitchi. She was a fantastic mentor, and most

importantly a very good friend. I was fortunate to work with her for last five years where she

inspired me to be a good researcher.

I thank my defense committee members, John Skvoretz, Lawrence O. Hall, Giovanni L.

Ciampaglia, and Michael Maness for the feedback received to improve this dissertation.

I had awesome collaborators. A few of them are Clayton Gandy, Juan Arroyo Flores, Essa

Alhazmi, Kin Wai NG, Nazim Choudhury, Abhishek Bhattacharjee, and Renhao Liu.

I am very fortunate to have good friends, some are my roommates, Chatura Wickramaratne,

Sachin Wickramaarachchi, Nalaka Kapuruge, and others are my lab mates Sathyanarayanan Aakur,

Subramanian Viswanathan, and Sreeja Nair.

This work was supported by the DARPA SocialSim Program and the Air Force Research

Laboratory under contract FA8650-18-C-7825, and National Science Foundation (NSF) in USA

under the grant IIS 1546453. I also thank Pacific National Northwest Laboratory (PNNL), and

Leidos for their support through out the SocialSim project for providing data and evaluation code.

My parents, my grandmother, my sister, my aunt, and my uncle always give me the courage

and strength to continue my studies.

Lastly, I am truly blessed to have my wife, Keshani who supported me throughout my

doctoral studies, especially during the pandemic where we had our first son, Keyal.



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1: Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Privacy of Social Network Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Simulating Social Media Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Privacy of Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Graph Privacy and Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 De-anonymization Attack Models and Success Metrics . . . . . . . . . . . . . . . . . . 12

2.2 Modeling Privacy Based on Network Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 The Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2.1 The Threat Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2.2 The Attack Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Causality Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3.1 Causality via Explanatory Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3.2 Associativity via Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Real World Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Synthetic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2.1 dK-Random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2.2 ERGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2.3 Leader-Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Graph Vulnerability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Causality Analysis Based on Explanatory Modeling . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Performance Analysis Based on Predictive Modeling . . . . . . . . . . . . . . . . . . . . 36

2.4.3.1 Linear Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3.2 Polynomial Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 3: Privacy of Labeled Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Modeling Privacy Based on Network Properties and Node Labels . . . . . . . . . . . . . . . . . 47

3.2.1 The Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Topology and Node Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Real World Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Synthetic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 The Vulnerability Cost of Node Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 The Impact of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Epidemic and the Risk of Node Re-identification . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Summary and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4: Simulating Social Media Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Timeseries Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Cascade Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.4 Network Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.5 Simulating Finer Grained Social Media Activity. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5: Simulating Online Discussion Threads Using Endogenous Signals . . . . . . . . . . . . . . . . . 82
5.1 Predicting Pools of Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Generating Pools of Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Reconstructing a Realistic Pool of Conversations . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2.1 Modeling the Problem using a Genetic Algorithm. . . . . . . . . . . . . . 89
5.1.2.2 Ranking Pools of Conversations with Machine Learning. . . . . . . . 90

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 The Goodness Score of a Conversation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 The Structure of Conversations in the Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Temporal Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.4 Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Summary and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 6: Simulating Twitter Activity Using Exogenous Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1 Simulator Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Modular Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.2 Seed Prediction Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.3 Cascade Generation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 Venezuela Political Crisis Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Data Collection and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.2.1 Twitter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2.2 Exogenous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 Predicting the Number of Shares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Predicting User Engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Summary and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 7: Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Appendix A: Copyright Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ii



List of Tables

Table 2.1 Graph properties of the real and synthetic network datasets. . . . . . . . . . . . . . . . . . . . 29

Table 2.2 A comparison of the accuracy of predicting F1-score. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 3.1 Graph properties of the real network datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.2 Basic statistics of generated ERGM networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.1 The overview of the simulation scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 5.1 Terminology used in this chapter.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 5.2 Subreddits used for data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 5.3 Properties of Reddit conversations in our datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 5.4 Features used to represent a message in a Reddit conversation. . . . . . . . . . . . . . . . . 97

Table 5.5 Reddit conversations grouped by post time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.6 Performance of the size and structural virality of the conversations. . . . . . . . . . . . . 102

Table 5.7 Performance of the largest and the most viral conversations. . . . . . . . . . . . . . . . . . . . 103

Table 5.8 Performance of the volume and users in the conversation pool. . . . . . . . . . . . . . . . . . 104

Table 5.9 A comparison of the collectivity scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 6.1 Keywords used for data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

iii



List of Figures

Figure 2.1 Framework to measure privacy and utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 A comparison of attack strength based on different overlap choices. . . . . . . . . . . . . 21

Figure 2.3 Transitivity (C) and assortativity (r) on LF graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.4 A comparison of the F1-score over different graph input spaces. . . . . . . . . . . . . . . . . 31

Figure 2.5 A comparison of the F1-score over LF graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.6 Pearlian directed acyclic graph.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.7 A comparison between F-test and mutual information measures. . . . . . . . . . . . . . . . 37

Figure 2.8 The performance metrics over the degree of polynomial features. . . . . . . . . . . . . . . . 39

Figure 3.1 The overview of generating identical and non-identical node pairs. . . . . . . . . . . . . . 50

Figure 3.2 Example feature vector made up from NDD and NAD vectors. . . . . . . . . . . . . . . . . 51

Figure 3.3 Proportion of cross group ties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.4 Accuracy of predictions over original networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.5 T-statistic between prediction scores of GS(LBL) and GS networks.. . . . . . . . . . . . 61

Figure 3.6 The importance of features across original networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.7 Graph vulnerability over a series of epidemic graphs under SI model. . . . . . . . . . . 66

Figure 4.1 The granularity of predictions in decreasing order of complexity. . . . . . . . . . . . . . . . 70

Figure 5.1 Sample simulation scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.2 Representation of conversation trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iv



Figure 5.3 Basic characteristics of Reddit conversations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5.4 Discussions on Reddit during the Bitcoin scaling debate. . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.5 The distribution of the size and virality of conversations. . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.6 The conversation pool over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.7 The size of conversation pool over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.8 The number of unique users over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.9 The number of users who engaged with conversations. . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.1 Predicting Twitter topic activity using exogenous data. . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.2 Overview of the proposed simulator design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.3 Timeline of Venezuela political events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 6.4 Timeseries of tweets, news articles, and Reddit messages. . . . . . . . . . . . . . . . . . . . . . . 125

Figure 6.5 Model performance of predicting tweets over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 6.6 The number of tweets per topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 6.7 Overview of the accuracy in forecasting Twitter activity. . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 6.8 The number of shares (tweets and retweets) per topic. . . . . . . . . . . . . . . . . . . . . . . . . . 133

v



Abstract

Social media datasets are fundamental to understanding a variety of phenomena, such as

epidemics [1], adoption of behavior [2], crowd management [3], and political uprisings [4]. At

the same time, many such datasets capturing computer-mediated social interactions are recorded

nowadays by individual researchers or by organizations. However, while the need for real social

graphs and the supply of such datasets are well established, the flow of data from data owners to

researchers is significantly hampered by privacy risks: even when humans’ identities are removed, or

data is anonymized to some extent, studies have proven repeatedly that re-identifying anonymized

user identities (i.e., de-anonymization) is doable with high success rate [5, 6, 7, 8].

A main research challenge is to develop a principled understanding of how to measure the ef-

fectiveness of an anonymization scheme and thus, conversely, the likely success of a de-anonymization

attack [9]. This dissertation develops methods to understand what makes some graph datasets more

resilient to de-anonymization attacks. We propose a data-driven framework to 1) quantify the vul-

nerability of a graph to a re-identification attack; 2) quantitatively identify which graph structural

properties contribute most to graph vulnerability; and 3) propose guidelines to develop new method-

ologies related to graph anonymization, de-anonymization and graph vulnerability quantification.

We show the usefulness of this framework on a large set of synthetically generated graphs with con-

trolled propertied inspired from a set of real social networks. Thus, we provide an unified framework

to analyze the privacy/utility trade-off imposed on any family of social graphs.
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We extend this data-driven framework for networks with node attributes. Using this im-

proved framework, we quantify how much better a node re-identification attack performs when the

node attributes are included in the attack compared to when there is no node attribute information

available to the attacker. We quantify the privacy impact of node attributes under an attribute

attachment model biased towards homophily, and analyze the interplay between graph structures

and attribute information. Our results show that binary node attributes increase the chance of

revealing node identity independent of their placements in the network. Further, we show that

other network properties independent of the degree distribution put node privacy at risk. This

improves the current understanding of graph privacy, as it means that protecting graph privacy is

much harder than previously considered [10, 11].

Once privacy is guaranteed to a certain level, social media datasets are useful for various

studies. One such important study is to analyze and model the information spreading patterns on

social networks. Understanding how information (e.g., opinions, rumours, etc.) spreads on social

networks has many benefits ranging from controlling the spread of bad rumour [12], identifying

influential spreaders [13], reducing the harm of an outbreak, etc. [14]. Although there are a variety

of classical diffusion models developed for epidemic spreading [15], they are not representative for

capturing the information spread in social media. This dissertation contributes to the development

of data-driven models to predict social media activity.

In this line of work, we first develop methods to forecast how conversations will evolve on a

social media platform. Given a set of original posts on a social platform, such as posts on Reddit

in a continuous interval of time, we predict the conversation trees rooted in these seeds. For each

conversation, we predict the final shape of the message tree, the user who posts each message, and
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the time (in continuous space) of the posting of each message. Our solution uses a probabilistic

generative model with the support of a genetic algorithm and Long-Short Term Memory (LSTM)

neural networks. We evaluate the proposed approach on real world conversations as appeared on

subreddits related to crypto-currency and cyber-security on Reddit. We show that this technique

can generate accurate conversation topological structures over time, and can accurately predict the

volume of messages and the engagement of users over time.

We improve this technique to predict the Twitter activities per topic of interest during a

political crisis period. By their nature, periods of crisis do not include many repeatable events, thus

it is difficult to learn and predict how social media users react. We use external events information as

seen through the lens of physical conflict and news when improving the simulator design. Specifically,

we use the time-aligned exogenous signals to predict when tweets are posted, in which topic, and

by which user. We use the previously developed cascade generation model to predict the resharing

activity. We evaluate this finer-granularity of simulations by the volume and temporal pattern of

Twitter discussions, new user engagements and the structure of user interaction network. We show

on Twitter data collected during the Venezuela political crisis that our model generates activities

that follow the ground truth.
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Chapter 1: Introduction

Social media platforms such as Twitter, Reddit, YouTube, and Facebook are popular over

the last few years because they offer useful services for people to connect and interact with each

other. These platforms offer large network datasets that often represent social interactions between

real-world entities like friendship, follower, and professional relations. These datasets are helpful for

a variety of research studies such as community evolution [16], opinion polarization [17], disaster

response [18], racial/ethnic disparities [19], stress detection [20], etc.

This dissertation focuses on two important studies of social media: protecting privacy of

individuals in publicly available social network data, and simulating online user activity in various

social media platforms. The first study was motivated by the access and privacy issues of social

network data due to the sensitive information they capture. For example, there are serious privacy

issues raised when social network data leaks political leanings, sexual preferences, corporate cre-

dentials, etc. [21]. The second study aims to accurately model information dissemination in social

media across various contexts. Being able to forecast social media activity in the future has imme-

diate applications. For example, platform curators can predict users who may post inflammatory

messages in a conversation, and monitor/censor their activity. Other benefits include the evaluation

of intervention strategies to limit disinformation.
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1.1 Privacy of Social Network Data

Social networks have substantial scientific value to the research community but public re-

lease of such data may jeopardize the privacy of individuals. There are numerous ways that privacy

can be breached. For example, an adversary might be interested to find out whether a particular

user is active on a certain political forum, or whether there is a relationship between two users

in a dating network, or whether a group of users in a neighborhood voted for a particular candi-

date. A number of data protection methods have been proposed to mitigate the privacy invasion

of individuals [22]. For example, a user’s identity may be protected via naive sanitizing, by simply

removing the identifiable attributes from the publicly available data, or by structural anonymiza-

tion, in which nodes and edges in the social network are removed/inserted to obscure the original

topological structure. However, data breaches happen regularly where adversaries use sophisticated

techniques to defeat data protection mechanisms. The de-anonymization attack on Data for De-

velopment (D4D) challenge data [23] is a good example on breaching the privacy of individuals

from poorly sanitized public data. The D4D datasets represent "anonymized" call records and SMS

exchanges that were extracted from the users of major communication network in the Ivory Coast.

Yet the adversaries revealed the identity of users using a powerful de-anonymization attack [24].

They used the information from different anonymized subgraphs to decode the anonymized user

accounts.

An important question is how to effectively anonymize graphs without destroying their util-

ity [25]. For example, preserving particular network characteristics (e.g., degree distribution, clus-

tering, etc.) in the anonymized graph is important for the end application. Typically, to the extent

these methods preserve utility, the anonymized graphs are vulnerable to modern de-anonymization
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atacks [9]. What is not well understood, however, is the interplay between the anonymity guarantees

that these anonymization methods provide vs. the strength of the attack and the particularities

of the dataset to be anonymized. Or, whether some networks are inherently more "anonymiz-

able," that is, immune to strong attacks even using weak structural anonymization schemes. A

main research challenge is to develop a principled understanding of how to measure the effective-

ness of an anonymization scheme and thus, conversely, the likely success of a de-anonymization

attack. In this dissertation, we try to understand what makes some graph datasets more resilient

to de-anonymization attacks.

1.2 Simulating Social Media Activity

Understanding how information is disseminated in online social environments has significant

real-world impact, from health care to marketing. Significant effort has been invested in charac-

terizing information diffusion in various platforms. For example, Cheng et al. [26] characterized

the types of information cascades in Facebook. They showed the types of cascades depend on the

factors related to the effort and social cost of user participation. Zuo et al. [27] studied the social

contagion of cheating behavior in online gaming platforms. Vosoughi et al. [28] determined based

on a collection of tweets of political news that false information spreads faster, farther, deeper and

broader than true facts. This phenomenon may be explained by human factors such as emotional

reaction to surprise, fear and disgust that are more likely induced by fabricated news.

Our goal is to develop a social simulator that captures the information dissemination within

and across various social media platforms. A simulator is more useful when it is able to predict

realistic online user activities at fine granularity (who responds to whom on which topic, and when)
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in a future time horizon without having the ground truth activity. Although simple to state, this

granularity of predictions is shown [29] to be difficult to make in part because of the irregular

patterns of information flows due to the influence of both internal and external factors, and in

part because different social platforms have different algorithms for content promotion. A reliable

simulator can realistically respond to internal and external stimuli by: 1) capturing peaks of activity

on particular subjects of interest; 2) responding realistically to the timing of external events and

internal amplified discussions; 3) capturing activity per topic, where topics can be loosely related;

and 4) representing accurately the size of the newly engaged audience, that can vary significantly

over time and with topics.

Simulating user activities in online social media platforms has many benefits. These predic-

tions can be used to study "what if" scenarios in an operational setup. For example, what response

would be generated if a particular post is made by a particular user account? That is, how large of

a reaction would that generate in terms of messages and user engagement over time? What if that

same message is posted by a different user? (say, a government organization vs. a bot account?).

On the other hand, researchers could test the effects of intervening within the platform to influence

activity: would the blocking of some accounts significantly impact a disinformation campaign? How

late in an information operation would an intervention be effective, knowing that it may take some

time to identify the information campaign and its operators? Other applications for such a simu-

lator include generating realistic datasets for filling in gaps in data collected for various scientific

enquiries; studying cross platform information diffusion; or identifying users who aim to promote

violence during an election season.
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1.3 Contributions and Outline

We make multiple contributions in this dissertation towards developing data-driven models

using social network data.

• Chapter 2 introduces a data-driven framework to measure privacy and utility on network data.

We develop methods to examine the interplay between graph properties and the vulnerability

to de-anonymization attacks. We demonstrate its applicability via extensive experiments on

thousands of graphs with controlled properties generated from real datasets. In addition,

we show empirically that there are structural properties that affect graph vulnerability to

re-identification attacks independent of degree distribution.

• Chapter 3 extends this framework to explore the interplay between graph topology and at-

tribute placement with respect to the anonymity. We quantitatively study the impact of

binary node attributes on node privacy. Our experiments show that the population’s diversity

on the binary attributes consistently degrades anonymity. The content of these two chapters

is primarily based on our published work [30, 31, 32].

• Chapter 4 introduces the related problems of simulating social media activity. We describe

the challenges in this problem space, discuss the related attempts, and explain the problem

scenarios that motivate the design of social simulators developed as a part of this dissertation.

• Chapter 5 proposes a data-driven method that forecasts groups of topic-related, overlapping,

online conversation trees on Reddit. Our method is generative: given a group of original

posts, it generates the resulting conversation threads with timing and authorship information.

We demonstrate using two large datasets from Reddit that the microscopic properties of
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such groups of conversations can be accurately predicted when starting from the original

posts, without knowledge of the intermediate reactions to such posts. We show that our

solution significantly outperforms competitive baselines in terms of predicting the conversation

structure and user engagement over time.

• Chapter 6 presents the design, implementation and evaluation of a simulator that generates

Twitter activity related to a political crisis using signals from contemporary exogenous data,

such as news articles and Reddit. The simulator is composed of multiple modules, each

specialized to accurately predict a dimension of the activity, such as the number of tweets,

or the retweet cascades. We use the cascade solution presented in Chapter 5 to predict

the growth of retweet cascades, thus testing its generality across two platforms, Reddit and

Twitter. Most importantly, the simulator generates activity as it pertains to a particular

topic from the overall conversation of interest. We use the Venezuela political crisis from the

beginning of 2019 as the scenario on which we train and test the simulator. We describe our

experience on building this simulator, including the failed attempts at capturing peaks and

lows in social media activity. The content of Chapter 4-6 is primarily based on experience

from DARPA SocialSim Challenges.

• Chapter 7 concludes with a discussion of our contributions and the future work.
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Chapter 2: Privacy of Network Topology1

Social networks are often mined to uncover insights about the structure and function of the

interactions represented. This substantial scientific value to the research community comes with

risks: the release of such data may jeopardize the privacy of individuals.

The AOL [33] and Netflix [34] scandals are textbook examples on breaching the privacy

of individuals by publicly releasing poorly sanitized data. The first scandal was related to the

public release of anonymized search logs by AOL in 2006 [35]. These records contained web search

queries of more than 500,000 Americans who used the AOL search engine for three months. Two New

York Times journalists matched the personally identifiable information present in these anonymized

records with the publicly available phone book listings to decode a few user identities. The most

popular re-identified account was the user No. 4417749, Thelma Arnold, a 62-year-old widow who

searched for topics such as “numb fingers”, “60 single men” and “dog that urinates on everything” [35].

It revealed that many other user accounts ranging from cancer patients, pregnant mothers to college

students were also re-identifiable using a similar methodology. This privacy violation led to a class

action lawsuit against AOL at the end [36]. The second scandal was related to the public release

of Netflix movie ratings as a part of Netflix movie recommendation challenge [37]. Two academic

researchers matched these records with the Internet Movie Database (IMDb) ratings [34]. They were

able to identify many users present in both datasets even though their identities were anonymized

in the Netflix dataset.
1This chapter was previously published in [30]. Permission is included in Appendix A.
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Many anonymization methods have been proposed to mitigate the privacy invasion of in-

dividuals from the public release of graph data [22]. The accepted approach now is to anonymize

social graphs by modifying the graph structure enough to decouple the particular node identity

from its social ties, yet preserving the graph characteristics in aggregate. Various solutions have

been proposed, some based on rewiring the original graph structure, others based on clustering, and

others based on generating graphs from a graph signature. For all structural graph anonymization

techniques, however, the challenge is the tension between providing privacy in the altered graph

structure and preserving the accuracy of the structural characteristics of the original graph in the al-

tered graph, which is what matters for their utility for research [38]. In this method, the anonymized

graph is isomorphic to the original preserving the structural data utility which in turn makes it the

most vulnerable instance to basic de-anonymization attacks [39]. At the other extreme, the gener-

ation of random graphs could be considered as an anonymization method to generate a complete

non-isomorphic graph to the original. Though this method achieves a higher level of privacy, signif-

icant loss of original graph structure may affect the fidelity of anonymized data usage. Typically, to

the extent many anonymization methods preserve utility, the anonymized graphs are vulnerable to

modern de-anonymization attacks [9]. Thus, an important question is how to effectively anonymize

graphs without destroying their utility while protecting the privacy of users [25].

Various studies touched on this problem, typically in the context of specific anonymization

techniques and specific desired utility metrics [40, 9]. For example, Ji et. al. [40] present a bench-

mark study on comparing perturbation-based anonymization schemes with respect to the preserved

utility and the resistance to specific de-anonymization attacks. Missing from the state of the art is

a systematic understanding of the limitations on anonymity that utility objectives impose. Specifi-

8



cally, we ask: Which graph properties give away most information such that a large fraction of the

nodes can be identified? Understanding the answer to this question is beneficial in many practical

ways. First, it can help the data practitioner in deciding which graph properties should not be

preserved in the anonymized version of the dataset, in an attempt to increase node anonymity. For

example, if the joint degree distribution is shown to be revealing too much information (as it was, in

fact, shown in [41]), then an anonymization technique that preserves the degree distribution of the

original graph dataset should be understood that it comes with significant risks in terms of privacy

and may be avoided. Second, new anonymization techniques may be designed with the specific ob-

jective of obscuring in the anonymized graph the very properties of the original graph that proved

to be too revealing. Thus, for example, if for a particular network the degree assortativity (defined

as the tendency of nodes with similar degrees to be connected by an edge) significantly helps in

node re-identification, then an anonymization algorithm that perturbs the assortativity coefficient

may be needed. This observation opens a new path in the space of graph anonymization techniques,

where the typical design objectives include the preservation of some structural properties, rather

than their explicit perturbation.

In this chapter, we propose a modeling framework to 1) quantify the vulnerability of a graph

to a re-identification attack; and 2) quantitatively identify which structural properties contribute

most to graph vulnerability. We show the usefulness of this framework on a large set of synthetically

generated graphs with controlled properties inspired from a set of real social networks.

This chapter makes the following contributions. First, we introduce a new question which,

while related to previously asked questions, opens a new research direction. Specifically, we ask:

which network characteristics make a graph more vulnerable to a de-anonymization attack? Answer-
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ing this question can guide data practitioners to navigate among many anonymization techniques

and utility requirements. Second, we propose a framework [42] that answers empirically this ques-

tion. Third, as a proof of concept, we instantiate this framework by employing a representative

set of network metrics, a strong machine learning based de-anonymization attack, and thousands of

graphs with controlled characteristics. And fourth, our experiments show how several graph metrics

have a combined effect on graph vulnerability under the de-anonymization attack considered.

The rest of the chapter is structured as follows. Section 2.1 presents the related work.

Section 2.2 introduces the framework and our proof-of-concept instantiation of its modules. Sec-

tion 2.3 presents the real networks and the families of synthetic datasets used in our empirical

study. Section 2.4 analyzes the relationships between graph properties and vulnerability to node

re-identification. And finally, Section 2.5 concludes with discussions of our contributions.

2.1 Related Work

Much progress has been made in the last decade on problems related to graph anonymization.

To place our results in the vast literature on graph anonymization, we discuss related work structured

around our main contributions.

2.1.1 Graph Privacy and Utility

Because utility is typically expressed as (distance between) graph metrics and graph metrics

describe network properties, our question of which network properties makes graphs vulnerable to

de-anonymization attacks is closely related to the question of utility vs. anonymity. Significant effort

has been invested in understanding the inherent tension between achieved privacy and preserved

utility on publishing graph datasets [41, 22]. For example, while any anonymization scheme that
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preserves the degree distribution is vulnerable to de-anonymization attacks [9, 40], perturbations

to the degree distribution in the anonymization process lead to significant utility loss, that is, to

perturbations of important graph properties in the anonymized graphs [43]. The fraction of nodes

with only one neighbor is an important factor in maintaining anonymity: intuitively, they carry

little information to reveal the identity of their (only) neighbor [9]. Moreover, it has been shown

experimentally that utility is degraded faster than privacy is achieved [44, 38].

Theoretical frameworks were proposed to quantify the tradeoff between privacy and utility.

Ji et al. [45] introduced a theoretical model to quantify the de-anonymizablity of graph datasets

by considering the topological importance of nodes. They inferred that privacy is affected by high

average degree. Lee et al. [46] analyzed the relation between the utility of an anonymized graph

and its vulnerability to a common neighbor-based node re-identification attack. They formulate

conditions for the success of de-anonymization attacks based on two distance-based utility metrics

between the anonymized (or auxiliary) and the original graph.

The differences between the privacy vs. anonymity investigations and our focus are the

following: First, our question addresses the original graph properties rather than the anonymized

version. Thus, answers to this question are independent of any anonymization techniques, but

instead apply to the intrinsic properties of the original network. Second, by not focusing on utility

we are not restricted to selecting a subset of “useful” properties of the network for a particular

context, and thus our question allows for a wider investigation of graph properties and their effect.
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2.1.2 De-anonymization Attack Models and Success Metrics

A well accepted graph de-anonymization attack uses information from an auxiliary graph

in order to re-identify the nodes in an anonymized graph [47]. The success of such an attack

is determined by the rate of correct re-identification of the original nodes in the network. In

general, de-anonymization attacks harness structural characteristics of nodes that are uniquely

distinguishable [22]. Many such attacks can be categorized into seed-based and seed-free, based on

the prior seed knowledge available to an attacker [22].

In seed-based attacks, the process of de-anonymization is conducted to re-identify nodes and

ties with the support of sybil nodes [48] or some known mappings of nodes in an auxiliary graph

[5, 6, 7, 49, 8]. The effectiveness of such attacks is influenced by the quality of the seeds [9].

In seed-free attacks, the problem of de-anonymization is usually modeled as a graph matching

problem [50] (also known as the network alignment problem [51]). On aligning networks, the goal

is to find the correct mapping between the node sets of two structurally correlated graphs. Recent

work suggests information-theoretic conditions when this perfect mapping is possible [52, 53, 51, 54].

Most of these studies are based on Erdös-Rènyi models (theoretical models without representation

in real datasets) and assume unlimited computational resources, while others make impractical

assumptions about the seed knowledge, such as the availability of hub nodes as seeds [55].

Several research efforts have proposed statistical models for the re-identification of nodes

without relying on seeds, such as the Bayesian model [50] or optimization models [56, 39]. Many

heuristics were taken into account for the propagation process of re-identification, exploiting graph

characteristics such as degree [57], k-hop neighborhood [58], linkage-covariance [38], eccentricity [47],

or community [59].

12



Some anonymization techniques rely on perturbing a set of edges in the original graph

within the limits of a given privacy budget [22]. For example, differential privacy captures the

amount of noise injected [41], which is also a popular theoretical metric of quantifying the privacy

of an anonymized graph. However, differential privacy is highly sensitive to the privacy budget

which measures the maximum number of queries acceptable without leaking secrets [60]. Moreover,

privacy metrics based on differential privacy have been shown to over-estimate privacy gains [44].

Sharad [9] proposed a general threat model to measure the success of a de-anonymization

attack which is independent of the anonymization scheme. He proposed a machine learning frame-

work to benchmark perturbation-based graph anonymization schemes. This framework explores

the hidden invariants and similarities to re-identify nodes in the anonymized graphs [24]. Impor-

tantly, this framework can be easily tuned to model various types of attacks. We build on Sharad’s

approach in this study.

2.2 Modeling Privacy Based on Network Properties

Our main objective is to quantify the relationship between a graph’s structural properties

and the risk to the privacy of its nodes. We call node privacy the ability to keep the identity

of a node protected. Intuitively, in a regular graph—where all nodes have the same number of

neighbors—nodes are private: it is impossible, based on topological information only, to distinguish

a node from the others. At the other end of the spectrum, the core of a star topology is easy to

identify with some extra information. Real graph datasets lay in between these examples.

A node’s identity may be protected via naive sanitization, by simply removing the identifiable

attributes of the node, or by structural anonymization, in which nodes and edges in the graph are
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removed/inserted to obscure the original topological structure. In this work we do not need to

differentiate between these two scenarios, as the question we ask attempts to relate the properties

of a graph—whether original or structurally perturbed—and the privacy of its nodes. Specifically,

we ask: Given a graph topology, which of its structural properties reveal most information that can

be used to identify its nodes? Note that if the graph of interest is the original topology of a network,

then the question relates to the intrinsic vulnerability of a dataset to a re-identification attack.

If the graph is already perturbed, then the question refers to the vulnerability of the structurally

anonymized network to a de-anonymization attack. In this chapter, we use re-identification and

de-anonymization attacks interchangeably.

2.2.1 Framework

To answer this question, we developed a framework as shown in Figure 2.1. The framework

takes as input a graph dataset and contains three main components. One component, called the

Attack Model in the figure, implements a re-identification attack on the input dataset and outputs a

vulnerability score. Any attack algorithm can be plugged in to this component. For experimentation,

we implemented a machine-learning algorithm (described in Section 2.2.2.2) based on an accepted

threat model [52] (presented in Section 2.2.2.1). The definition of the vulnerability score depends

on the attack model implemented.

The second component of this framework, called “Network Analysis” in the figure, performs

traditional network measurements. Any metrics of interest can be output from this component

in the form of numerical values or distributions. Since there are many well established tools for

network analysis in the form of libraries implemented in Python, R, C++, etc., we do not need to

provide any more details here.
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Figure 2.1: Framework to measure privacy and utility. We analyze the relationship between graph
vulnerability and graph properties.

Finally, the network metrics of interest and the vulnerability score of the original graph are

the input of the third component, the Causality Analyzer. This component performs a rigorous

analysis of the relationship between graph vulnerability and its structural properties. The output

from this component is providing a statistical answer to the question of interest.

2.2.2 The Attack Model

In order to quantify the vulnerability of a graph to node re-identification attacks, we employ

a machine learning-based approach that aims at finding a bijective mapping between nodes in two

different but overlapping graphs.

2.2.2.1 The Threat Model

We consider the classical threat model [52] in which the attacker aims to match nodes from

two networks whose edge sets are correlated. A real-life scenario corresponding to this threat model

is as follows. Let us assume there is a privacy breach over the Unix accounts of some students in a

15



Computer Science department: the accounts of those who accessed Facebook and Twitter from the

university network are thus compromised. Consequently, an attacker has a partial view of possibly

overlapping Facebook and Twitter subgraphs: some individuals are present in both graphs, even if

their identities have been removed. The attacker’s task is to find a bijective mapping between the

two subsets of nodes in the two graphs that correspond to individuals present in both networks.

Formally, we assume that the adversary has a sanitized graph Gsan that could be associated

with an auxiliary graph Gaux for the re-identification attack. In the scenario discussed above, Gsan

is the Facebook network, while Gaux is the Twitter network of the students affected.

In order to model this scenario using real data, we split a real dataset graph G = (V,E)

into two subgraphs G1 = (V1, E1) and G2 = (V2, E2), such that V1 ⊂ V , V2 ⊂ V and V1 ∩ V2 = Vα,

where Vα 6= φ. The fraction of the overlap α is measured by the Jaccard coefficient of two subsets:

α = |V1∩V2|
|V1∪V2| . In the shared subgraph induced by the nodes in Vα, nodes will preserve their edges

with nodes from Vα but might have different edges to nodes that are part of V1 − Vα or part of

V2 − Vα.

In an optimistic scenario, an attacker has access to a part of the original graph (e.g., G1)

as auxiliary data and to an unperturbed subgraph (e.g., G2) as the sanitized data whose nodes

the attacker wants to re-identify. It is also possible to split G1 and G2 recursively into multiple

overlapping graphs, maintaining the same values of overlap parameters as above. This allows us to

assess the feasibility of the de-anonymization process for large networks by significantly reducing

the size of G1 and G2.

The resulting graphs are now the equivalent of the Facebook and Twitter networks we

used as an example above. The overlap is the knowledge repository that the attacker uses for
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de-anonymization [61]. Part of this knowledge will be made available to the machine learning

algorithms.

Intuitively, the larger α, the more successful the attack. However, the relative success of

attacks under different anonymization schemes is observed to be independent of α [9]. In order to

experiment with various strengths of the attack for a fixed value of α = 0.2, we constructed Vα in

four different ways: i) as a random collection of nodes from the original graph G (R); ii) by selecting

the highest degree nodes from G (HD); iii) by building a breadth-first-search tree starting from a

randomly selected node in G (BFS-R); and iv) by building a breadth-first-search tree starting from

the highest degree node in G (BFS-HD).

2.2.2.2 The Attack Algorithm

As previously discussed, many de-anonymization attacks can be implemented in this frame-

work. We chose to implement the attack algorithm based on a machine learning approach for a

number of reasons. First, machine learning techniques have proven successful in many real life

instances of the context of graph de-anonymization [24]. Second, machine learning approaches

automatically discover recognizable patterns, and thus they implicitly cover many algorithmic ap-

proaches for node re-identification. Therefore, they mount a powerful attack that can be used as

benchmark for future studies.

Intuitively, a machine learning attack uses the information about the users in the two net-

works from the example scenario above to learn structural network patterns. It then uses these

patterns to match different nodes based on similar structural characteristics. Each node is repre-

sented for learning by a set of features, as explained below.
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We chose to use neighborhood degree distribution (NDD) to construct the feature vector for

each node. NDD is a popular representation method due to its robustness to noise in distinguishing

nodes in the graph [24, 62] and for its generality [61]. Degree-based features are also shown to

be better counterparts than common-neighbor features for the performance of percolation-based

de-anonymization algorithms [8].

NDD of a user u is a vector of positive integers where NDDq
u[k] represents the number of

u’s neighbors at distance q with degree k. We concatenate the binned version of NDD1
u with the

binned version of NDD2
u to define the node u’s NDD signature. A distance q of 2 is sufficiently

revealing for social networks which are known for having a small average path length: larger values

of q will end up recording a large part of the graph which leads to high redundancy in training data.

We use a bin size of 50, which was shown empirically [9] to capture the high degree variations of

large social graphs. For each q, we use 21 bins, which would correspond to a larger node degree of

1050. All larger values are binned in to the last bin. This binning strategy is designed to capture

the aggregate structure of ego networks [43].

Note that the nodes in Gsan ∩ Gaux, common to both graphs, can be recognized as being

the same node (identical) in the two graphs based on their node identifier. Non-identical nodes are

unique to each Gsan and Gaux and do not exist in the overlap. We use a learning algorithm based

on an ensemble of random decision trees (i.e., Random Forest) to perform the classification task of

quantifying graph vulnerability [63]. The classification task outputs 1 for identical node pairs and

0 for non-identical node pairs. This is the ground truth against which we measure the accuracy

of the learning algorithms. We generate examples for the training phase of the de-anonymization

attack by randomly picking node pairs from the sanitized (Gsan) and the auxiliary (Gaux) graphs,
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respectively. Each training example represents a pair of nodes (each node being represented by its

NDD) and whether the nodes are identical or not.

In most cases, we have an unbalanced dataset with the degree of imbalance depending

on the overlap parameter α, where the majority is non-identical node pairs. We use the reservoir

sampling technique [64] to take `=1000 balance sub-samples from the population S, and the SMOTE

algorithm [65] as an over-sampling technique for each sub-sample. Each sample is trained by a forest

of =100 random decision trees. Each decision tree performs a binary classification to measure the

quality of the classifier on the task of differentiating two nodes as identical or not. We use both

bagging [66] and randomized node optimization [67] techniques to select a random subset of training

examples with a random subset of features for each learner to train and test respectively. Having

many decision tree learners enable us to mount multiple attacks in the same graph space. Therefore,

we devise `× =100,000 attack scenarios per one input graph.

We measure the accuracy of the classifier in determining whether a randomly chosen pair

of nodes (with one node in Gsan and another in Gaux) are identical. We use F1-score to evaluate

the quality of the classifier. F1-score is the harmonic mean between precision and recall, typical

metrics for prediction output of machine learning algorithms. For each data sample, we perform

5×2 cross-validation to evaluate the classifier and record the mean F1-score.

Intuitively, the strength of an attacker is not solely defined by the size of the subgraph to

which the attacker has access, but also by the "quality" of the subgraph [53]: for example, a disjoint

set of low degree nodes (which would be the case of a randomly chosen set of nodes from a power-law

graph) carries less structural information than a connected subgraph of the same number of nodes.

Figure 2.2 presents the performance of the node re-identification attack under different methods of
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building the overlap subgraph. We present these results here before we introduce the datasets for two

reasons. First, the results are consistent across all datasets tested, and they support the intuition

presented above. Therefore, the characteristics of the datasets are irrelevant for understanding

these particular experimental results. Second, we only present these results to justify our choice

for building the overlap subgraph in the rest of the experiments. To maintain the reading flow, we

present all design details in this section.

Figure 2.2 confirms multiple intuitions. First, the attack is consistently and significantly

stronger when the nodes in the overlap are connected (scenarios marked with BFS in the plot).

Second, the attack is stronger when the density of the overlap is higher.

In the rest of our study, we use BFS-HD to generate the overlap. In addition to being a

stronger attack because of starting from a richer knowledge set, our attack mechanism based on

BFS-HD turns out to be representative for percolation-based network alignment methods [51] pro-

posed in other contexts, such as protein-protein interaction networks. Also, many de-anonymization

attacks [47, 68, 8] employ similar techniques based on the percolation theory. Our machine-learning

based attack is thus a generalization of existing de-anonymization attacks that have the same core

ingredients: start from a set of already identified nodes and successively identify their neighbors.

The reason behind the success of ML-based de-anonymization techniques is that they learn auto-

matically invariants useful for node re-identification. Thus, the same ML-based de-anonymization

attack can be used successfully against different anonymization techniques [9].
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R (d=0.0533, r=-0.084, C=0.148)
HD (d=0.0542, r=-0.081, C=0.155)
BFS-HD (d=0.0978, r=-0.145, C=0.302)
BFS-R (d=0.069, r=-0.06, C=0.154)

(a) fb107: 1K

R (d=0.0034, r=-0.015, C=0.013)
HD (d=0.0036, r=-0.015, C=0.014)
BFS-HD (d=0.0049, r=-0.072, C=0.03)
BFS-R (d=0.0049, r=-0.067, C=0.032)

(b) caGrQc: 1K

R (d=0.053, r=0.405, C=0.415)
HD (d=0.0533, r=0.408, C=0.425)
BFS-HD (d=0.0931, r=0.219, C=0.468)
BFS-R (d=0.072, r=0.204, C=0.393)

(c) fb107: 2K

R (d=0.0021, r=0.634, C=0.372)
HD (d=0.0022, r=0.637, C=0.429)
BFS-HD (d=0.0043, r=0.579, C=0.512)
BFS-R (d=0.0041, r=0.697, C=0.568)

(d) caGrQc: 2K

R (d=0.053, r=0.418, C=0.453)
HD (d=0.0535, r=0.407, C=0.456)
BFS-HD (d=0.0934, r=0.221, C=0.469)
BFS-R (d=0.0698, r=0.255, C=0.465)

(e) fb107: 2.5K

R (d=0.0022, r=0.661, C=0.507)
HD (d=0.0022, r=0.647, C=0.547)
BFS-HD (d=0.0043, r=0.588, C=0.564)
BFS-R (d=0.0043, r=0.701, C=0.607)

(f) caGrQc: 2.5K

Figure 2.2: A comparison of attack strength based on different overlap choices. The overlap choices
include Random (R), High Degree (HD) and BFS-trees (rooted in the highest degree node BFS-HD
and, respectively, a random node, BFS-R). Accuracy of predicting identical pairs is presented over
different dK spaces. Graph properties of density (d̄), assortativity (r), and transitivity (C) are
averaged over 8 subgraphs per dK-space that are associated with the given overlap.
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2.2.3 Causality Analyzer

The objective of the Causality Analyzer component is to reveal the effect of topological

metrics on graph vulnerability.

In our implementation, we chose to study the causality and associativity relationships [69].

In both cases, we start from the same set of metrics, vulnerability (as measured by the F1-score) and

a set of graph measurements obtained with classical social network analysis techniques, and apply

different tools to isolate the strength of the causality and the strength of associativity relationships.

As before, these tools can be replaced with different ones than we employed here.

2.2.3.1 Causality via Explanatory Modeling

We use explanatory modeling techniques [70] to measure the significance of the causal rela-

tionship between graph metrics and graph vulnerability.

We estimate the graph vulnerability function f through several regression tests, both linear

and entropy-based. Each model tests the individual effect of graph metrics on explaining the graph

vulnerability score. The target variable is the vulnerability score (i.e., F1-score), and independent

variables are the associated structural properties including macro-level graph metrics such as density,

assortativity, transitivity, average path length, and the proportion of degree-1 nodes in the given

network. We select these properties as an example for studying the importance of community

structure on the success of node re-identification attacks.

We use F-test [70] and Mutual Information (MI) to measure the causality in the relation-

ship [71]. F-test captures the significance of any independent variables on the correlation with the

target variable using multiple linear regression models. MI is defined as a nonlinear function of
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the join probability measure between target variable and independent variables, which captures any

kind of dependency in the variable space. Both F-test and MI are in the range of 0 to 1, and the

higher values represent more significant dependencies.

In order to infer the causal relationship in the target and independent variable space, we use

the Pearlian framework [72] which produces a Directed Acyclic Graph (DAG) describing the causal-

ity. Specifically, we use the IC* (Inductive Causation) algorithm [72] in the Pearlian framework to

establish this causality. The core idea is to find whether variable X has a (direct) causal influence

on variable Y. This algorithm outputs a directed acyclic graph where each variable represents a

node, and the edge represents a statistical dependence between variables for causation. The IC*

algorithm recursively constructs this graph after performing probabilistic conditional independence

tests for all pairs and triplets of variables. Specially, the algorithm assumes the existence of hidden

confounding variables when deriving latent causal structure. This is important as we do not cover

the entire graph metric space in our analysis. We used an open-source Python implementation [73]

of the Pearlian framework to perform the causality inference.

2.2.3.2 Associativity via Predictive Modeling

As an attempt to uncover potential association between graph metrics and vulnerability,

we quantify the level of predictability of the vulnerability score using structural properties. We

construct the graph vulnerability function f from the examples of derived vulnerability scores as-

sociated with structural properties in the given graph. Note that we use the same set of structural

properties used in explanatory modeling. Our models assess the ability to generate predictions

of vulnerability score for a set of unseen graphs, when given only the structural metrics as graph

descriptions. On validating predictive models, we provide measurements related to the residuals
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and generalization of each model. We use cross-validation (i.e., holdout sets) techniques to avoid

over-optimistic performance of the prediction results.

We report three metrics to measure the regression performance. First, the Root Mean

Squared Error (RMSE), which corresponds to the expected value of squared loss in the same units

as the target variable. Second, Explained Variance (EVAR), which measures the significance of the

variance of the error with respect to the variance of the target variable. Finally, the R2 score (R2S),

which measures the likelihood of predicting future examples correctly. RMSE ranges from 0 to ∞,

where lower values in the range of F1-score (0 ≤ F1-score ≤ 1) depict more accurate predictions.

EV AR and R2S range from −∞ to 1, the higher the values, the more accurate the models.

2.3 Datasets

Our objective is to evaluate the framework we proposed for quantifying what structural

properties make graphs more vulnerable to de-anonymization attacks. To this end, we select a

number of real network datasets (presented in Section 2.3.1) and generate families of synthetic graphs

using three different approaches that control particular graph metrics (as presented in Section 2.3.2).

These synthetic graphs serve to capture both independent and inter-dependent structural forces in

the network.

2.3.1 Real World Networks

We chose four publicly available datasets that represent real social networks of various types.

fb107 [74] represents social circles of an ego in Facebook. caGrQc [75] is a co-authorship network

between the authors of papers in general relativity and quantum cosmology. soc-anybeat [76] is an

interaction network available in the Anybeat online community, which is a public gathering place
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across the world. Finally, soc-gplus [77] is a follower network from Google+. Table 2.1 summarizes

the properties of these datasets.

2.3.2 Synthetic Networks

In order to be able to control graph characteristics, we also generated families of synthetic

graphs with the subsets of the characteristics of the real datasets. We used three graph generation

techniques that individually cover different spaces of graph metrics.

dK-Random graphs model topological constraints systematically with respect to the node

degree. They are known to be less random and more structured the higher the d (presented in

Section 2.3.2.1). While degree distributions have been shown to capture very important graph

properties [78], they typically fail to reproduce some others, such as the clustering coefficient. In

order to analyze graphs with controlled clustering coefficient (that is, similar to those of the real

networks studied), we employ the second graph generation technique: The Exponential Random

Graph Model (ERGM) is a mature modeling framework that maximizes the likelihood of generating

a random graph with given properties (presented in Section 2.3.2.2).

While widely used especially in Sociology, in our experience ERGMs fail to generate graphs

with the desired range of degree assortativity coefficient. In order to vary this structural charac-

teristic and cover the corresponding graph space, we used another technique specifically designed

to generate graphs with a good range of local and global assortativity coefficients, a model that we

name the Leader-Follower (LF) model and present in Section 2.3.2.3.
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2.3.2.1 dK-Random

The dK-series represents a set of descriptive statistic metrics that capture the original graph

structure at multiple levels of detail [79, 41]. Specifically, the dK-series summarizes the structure

of a graph from the degree distribution of a subgraph pattern of size d. Thus, 0K-graphs are

random graphs with a given average node degree, 1K-graphs are random graphs with a given degree

distribution, 2K-graphs are random graphs with a given joint degree distribution, 3K-graphs are

random graphs with a given interconnectivity of triplets of nodes, and so on. Intermediate steps

in the series can be defined, such as the 2.5K graph, which is a relaxed version of 3K-graphs

that reproduces both joint degree distribution and degree-dependent clustering coefficient [80]. We

used RandNetGen [78] to generate 0K, 1K, and 2K graphs. (In this work we have not used

2.5 graph generators, as controlling the clustering coefficient independently from the joint degree

distribution better fits our objectives). No graph generative algorithms are known for steps higher

in the series [78].

2.3.2.2 ERGM

Exponential-family random graph models (ERGMs) or p-star models [81, 82] are used in

social network analysis for stipulating, within a set structural parameters, distribution probabili-

ties for networks. Its primary use is to describe structural and local forces that shape the general

topology of a network. This is achieved by using a selected set of parameters that encompass differ-

ent structural forces (e.g., homophily, degree correlation/assortativity, clustering, and average path

length). Once the model has converged, we can obtain maximum-likelihood estimates, model com-

parison and goodness-of-fit tests, and generate simulated networks tied to the relationship between

the original network and the probability distribution provided by the ERGM.
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Our interest in ERGMs is based on simulating graphs that retain set structural information

from the original graph to generate a diverse set of graph structures. We used R [83] and the statnet

suite [84], which contains several packages for network analysis, to produce ERGMs and simulate

graphs from our real-world network datasets. In this case, we focused on three structural aspects

of the graphs: clustering coefficient, average path length, and degree correlation/assortativity. For

the ERGM based on clustering coefficient (ERGM-cc), we used the edges and triangle parameters

in the statnet package. The edges parameter measures the probability of linkage or no linkage

between nodes, and the triangle term looks at the number of triangles or triad formations in the

original graph. For the average path length model (ERGM-apl), edges and twopath terms were

used. The twopath term measures the number of 2-paths in the original network and produces a

probability distribution of their formation for the converged ERGM. Lastly, for the assortativity

measure (ERGM-dc), the terms edges and degcor were used to produce the models. The degcor

term considers the degree correlation of all pairs of tied nodes (for more on ERGMs see [85, 86]).

These terms proved to be our best choices for preserving, to a certain extent, the desired structural

information. Although the creation of ERGMs is a trial and error process, the selected terms were

successful in producing models for each of the original networks.

2.3.2.3 Leader-Follower

We use Leader-Follower (LF) model [87] to generate networks with controlled degree-based

assortativity coefficients. This model controls two node populations in which one group (i.e., fol-

lowers) selects edges randomly to connect such that the preferential attachment behavior emerges

spontaneously, while other group (i.e., leaders) adopts an anti-preferential behavior which creates

ties to lower-degree nodes. The generation algorithm requires three parameters: p is the fraction
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Figure 2.3: Transitivity (C) and assortativity (r) on LF graphs. Multiple regression models are
presented as a function of m, where dashed, dotted and dash-dotted lines represent models for
m = 2, 5, and 10, in this order.

of leader nodes, m is the maximum number of connections possible for a node to initiate, and l

defines the extent of neighborhood information available for a node to decide initial connections.

For simplicity, we set l = 1, such that a new node decides its choices to connect from an immediate

neighborhood around an anchor node.

When there are no leader nodes (p = 0), the generated networks exhibit strong preferential

attachment behavior, leading to a negative degree-assortativity value. When p = 1, the resulting

graphs have positive degree assortativity. Experimentally, p was confirmed to be proportional to

degree assortativity, as shown in Figure 2.3 for two of the real datasets we analyzed. Note also the

linear relationship between transitivity and degree assortativity in this plot.
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Table 2.1: Graph properties of the real and synthetic network datasets. All graphs are undirected.
Density (d̄) is the fraction of all possible edges. Degree-assortativity (r) measures the similarity of
relations depending on the associated node degree. Transitivity (C) is the fraction of triangles of all
possible triangles in the network. Average path length (κ) depicts the average shortest path length
between any pairs of nodes and degree-1 represents the percentage of nodes in the network with
degree exactly 1. Average values are presented over 100 synthetic graphs per space.

Network space |N | |E| d̄ r C κ degree-1 (%)

fb107

original 1034 26749 0.0500 0.4316 0.5045 2.9517 1.45
0K 1034 26749 0.0501 -0.0029 0.0501 2.0210 0.0
1K 1034 26749 0.0501 -0.0961 0.1466 2.1965 1.45
2K 1034 26749 0.0501 0.4316 0.3161 2.4020 1.45

ERGM-apl 1034 26749 0.0501 0.0017 0.0504 2.0193 0.0
ERGM-cc 1034 26749 0.0501 0.4293 0.5038 2.8796 0.57
ERGM-dc 1034 26749 0.0501 0.3747 0.1627 2.1197 0.0
LF (m=2) 1034 2066 0.0039 0.1425 0.2173 10.2155 0.0
LF (m=5) 1034 5165 0.0097 0.2308 0.2463 5.5336 0.0
LF (m=10) 1034 10330 0.0193 0.2733 0.2164 3.6806 0.0

caGrQc

original 5242 14496 0.0011 0.6592 0.6298 3.8047 22.83
0K 5242 14496 0.0011 -0.0011 0.0010 5.2155 2.22
1K 5241 14484 0.0011 -0.0355 0.0077 4.0002 22.83
2K 5241 14484 0.0011 0.6593 0.2710 1.0410 22.83

ERGM-apl 5241 14484 0.0011 0.0390 0.0064 5.4390 0.02
ERGM-cc 4507 14484 0.0014 0.6804 0.6278 5.6361 10.43
ERGM-dc 5237 14484 0.0011 0.4547 0.0790 5.5294 0.98
LF (m=2) 5242 10482 0.0008 0.1536 0.2132 13.0612 0.0
LF (m=5) 5242 26205 0.0019 0.24 0.2348 7.1527 0.0
LF (m=10) 5242 52410 0.0038 0.2771 0.1895 4.7513 0.0

soc-anybeat

original 12645 49132 0.0006 -0.1234 0.0217 3.1715 49.51
0K 12645 49132 0.0006 -0.0001 0.0006 4.8365 0.33
1K 12645 49132 0.0006 -0.1232 0.0149 2.8779 49.50
2K 12645 49132 0.0006 -0.1234 0.0176 2.4943 49.50

ERGM-apl 12635 49132 0.0006 -0.0572 0.0018 3.2206 0.61
ERGM-cc 12582 49132 0.0006 0.2285 0.1877 4.9853 2.57
ERGM-dc 12459 49132 0.0006 -0.0831 0.0158 3.3204 8.93

soc-gplus

original 23628 39194 0.0001 -0.3885 0.0037 2.2082 69.16
0K 23628 39194 0.0001 0.0009 0.0001 7.7045 12.46
1K 23628 39194 0.0001 -0.3514 0.0137 3.1760 69.16
2K 23628 39194 0.0001 -0.3885 0.0018 3.8620 69.16

ERGM-apl 22544 39194 0.0001 -0.0729 0.0004 4.5236 15.32
ERGM-cc 17784 39194 0.0002 -0.0651 0.0337 5.8122 39.76
ERGM-dc 22042 39194 0.0001 -0.2407 0.0024 4.0795 30.52
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2.4 Empirical Results

Our objectives for empirical evaluations are twofold. On one hand, we aim at evaluating

the utility of the framework we proposed. On the other hand, we use the framework to answer

the question: What structural properties makes some graph datasets more vulnerable to attacks than

others?

We start by evaluating the vulnerability of the real and synthetic graphs in our collection.

We quantify the vulnerability of a graph as a function of the rate of successful node re-identification,

and present a comparison of vulnerability scores across different families of graphs (as presented in

Section 2.4.1). Furthermore, we perform a rigorous analysis on the relationship between graph vul-

nerability and different structural forces to identify the factors that contribute towards a successful

de-anonymization attack. We present both information-theoretic (as presented in Section 2.4.2) and

performance (as presented in Section 2.4.3) measurements to evaluate this relationship.

2.4.1 Graph Vulnerability Analysis

We report the F1-score as the accuracy of predicting the structural equivalence of a pair

of nodes, which we refer to as graph vulnerability score. Figure 2.4 presents a comparison of

vulnerability scores for different synthetic graph spaces. We observe three phenomena.

The first observation is related to the comparison of vulnerability scores in ERGM spaces.

The mean vulnerability score increases in the order of ERGM-apl, ERGM-dc and ERGM-cc, while

ERGM-apl shows the widest range. What this seems to suggest is that preserving assortativity and

transitivity as utility metrics in an anonymization technique can potentially damage the anonymity

of the nodes in the graph. To the best of our knowledge, we are the first to observe this phenomenon.
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Figure 2.4: A comparison of the F1-score over different graph input spaces. Each score represents
prediction results of 5× 2 cross-validation samples, which is averaged over 100 synthetic graphs per
space.

To better understand the effect of degree assortativity, we focus on LF-generated graphs,

where assortativity is varied. Figure 2.5 presents a comparison of graph vulnerability scores as

a function of the LF graph generator parameters, p and m, as presented in Section 2.3.2.3. The

vulnerability score reaches a local maximum for small p and drop to local minima when p is in the

range of 0.4−0.6. Since p is proportional to assortativity, which in turn is proportional to transitivity

for the given LF graphs (Figure 2.3), it is highly likely that assortativity and transitivity are factors
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of graph vulnerability. We perform a rigorous statistical analysis in the next section to understand

how assortativity and transitivity affect the graph’s vulnerability to de-anonymization attacks.

Second, as Figures 2.4a–2.4d show, some of ERGM-generated graphs are more vulnerable

than 1K or even 2K graphs despite the fact that they do not replicate the original graph distribu-

tion. From previous results, the intuition was that privacy increases with the perturbation of the

degree distribution [41]. Our results show that a different graph metric—in this case transitivity—is

even more revealing than the degree distribution. Specifically, in the soc-anybeat network, the vul-

nerability of the ERGM-cc generated graphs is higher on average than the average vulnerability of

the 1K and 2K graphs (Figure 2.4c). This is happening despite the fact that the ERGM-cc graphs

have a very different degree distribution, as seen in the last column of Table 3.1: while the original

graph (and thus the degree-preserving 1K and 2K graphs) had 49.5% of nodes with degree 1, the

ERGM-cc has only 2.57% such nodes. This result shows that there are structural properties that

make a graph more vulnerable to re-identification attacks than the degree distribution does. While

previous work [41] showed that disturbing the degree distribution is necessary for anonymity, we

show that it not sufficient: other graph metrics must also be perturbed to achieve anonymity.

Third, some known phenomena are confirmed by our experiments. The original graph

(denoted as GS) is more vulnerable in all cases, except for the soc-anybeat network (Figure 2.4c).

We discuss the reason behind this divergence later. At the other end of the spectrum, 0K (or

Erdös-Rènyi) graphs are (as expected) the least vulnerable, but also the least representative of real

datasets. In addition, the vulnerability scores of 1K and 2K graphs are the closest to the original.

This confirms already known results that show that dK graphs lack real expectations of privacy,

since higher dK graphs leak significant graph structural information [88, 41].

32



0.0 0.2 0.4 0.6 0.8 1.0
p

0.88

0.90

0.92

0.94

0.96

0.98

1.00
F1

-s
co

re
m = 2

0.0 0.2 0.4 0.6 0.8 1.0
p

m = 5

0.0 0.2 0.4 0.6 0.8 1.0
p

m = 10

(a) fb107

0.0 0.2 0.4 0.6 0.8 1.0
p

0.92

0.94

0.96

0.98

1.00

F1
-s

co
re

m = 2

0.0 0.2 0.4 0.6 0.8 1.0
p

m = 5

0.0 0.2 0.4 0.6 0.8 1.0
p

m = 10

(b) caGrQc

Figure 2.5: A comparison of the F1-score over LF graphs. We generated a number of LF graphs
by varying parameters p and m. p is the probability that the network exhibits a force towards
anti-preferential attachment, which is positively correlated with degree-assortativity(r), while m
is proportional to density(d̄) of the network. Each score represents prediction results of 5 × 2
cross-validation samples, which is averaged over 10 synthetic graphs under the parameters of p and
m.

2.4.2 Causality Analysis Based on Explanatory Modeling

While Figures 2.4 and 2.5 show high variation in vulnerability with different topological

constraints, it is impossible to visually conclude what makes a graph more vulnerable. We study

the dependencies between the graph vulnerability score and a set of macro-level structural graph

properties to identify such patterns. One such pattern, in fact a causal explanation for graph

vulnerability, is presented in Figure 2.7 using explanatory modeling techniques. Two metrics of
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importance are used: F-test and mutual information (MI), as described in Section 2.2.3.1. In

the dK and ERGM spaces (as shown in Figures 2.7a and 2.7b), assortativity shows a relatively

low F-test value, suggesting a weak linear dependency with the vulnerability score. Meanwhile, it

shows significantly higher MI value, which suggests a better reduction of uncertainty on explaining

the vulnerability score. Transitivity also appears more non-linearly dependent in the dK space,

since MI is relatively higher. The average shortest path length has mixed results in F-test, but

MI reaches maximum for both spaces. The proportion of degree-1 nodes is shown to be a strong

candidate of dependency with graph vulnerability. It shows higher values for both F-test and MI.

This somewhat explains the position of the original soc-anybeat network (GS) with respect to the

vulnerability score in Figure 2.4c. Comparing with generated ERGM graphs, soc-anybeat original

graph has 49.5% degree-1 nodes who are structurally indistinguishable. However, degree-1 nodes

also reveal less information about their neighbors’ positions in the network.

Figure 2.7c presents the dependency analysis of LF graphs. Similar to dK and ERGM graph

spaces, assortativity and transitivity show relatively higher MI values, and average shortest path

length reaches the maximum MI. It appears that transitivity is a linear function of vulnerability (F-

test=1). In fact, when we control for assortativity, transitivity is found to be positively correlated

with assortativity in LF graphs (Figure 2.3). Since transitivity is linear with vulnerability and

assortativity is linear with transitivity, we would expect assortativity to linearly cause vulnerability.

However, this is not the case, as shown by F-test=0.53 in the second plot of Figure 2.7c.

Figure 2.6 shows the pictorial view of the Pearlian Directed Acyclic Graph (as presented

in Section 2.2.3.1) which describes the causal pathways from one graph metric to another, or to

the graph vulnerability score derived from our experimental data. We do not specify any prior
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assumption about the causality in the Pearlian framework, but let the IC* algorithm to decide the

optimal causal pathways based on probabilistic conditional independence tests. In Pearlian Directed

Acyclic Graph, bidirected edges represent indirect casual relationships due to unobserved variables.

We observe two phenomena: First, transitivity, density, average path length and the fraction

of degree-1 nodes have a direct statistical dependency with the graph vulnerability score. However,

such dependencies are not identified as genuine causal relationships by the Pearlian framework.

This set of dependencies could be due to a set of other (unobserved) confounding graph metrics.

In our setting, a confounding metric presents an alternative explanation for the observed statistical

dependency between a graph vulnerability and the associated graph metrics. While average path

length has an immediate confounding effect on the causal pathway between transitivity and graph

vulnerability, the fraction of degree-1 nodes and assortativity have shown a combined confounding

effect for the same causal pathway.

Second, assortativity does not have a direct statistical dependency with the graph vulner-

ability score, but has confounded other graph metrics (i.e., transitivity, density and the fraction

of degree-1 nodes) to cause an effect on graph vulnerability. In general, this confounding effect

from assortativity is well captured by transitivity, and it transforms to cause an effect on graph

vulnerability.

In conclusion, vulnerability can be explained as a linear function of the fraction of degree-1

nodes, and a non-linear function of other graph metrics. Non-linearity of the relationship between

transitivity, assortativity, and graph vulnerability score is being significantly highlighted by the

explanatory modeling techniques we used. In the next section we further analyze this relationship

over the predictive capability of graph metrics.

35



Figure 2.6: Pearlian directed acyclic graph. We use the Pearlian framework [72] for the causal
inference over the graph metrics and graph vulnerability score. The edge direction represents the
cause-effect relationship, where the arrow head points to the effect. The "*" notation on the edge
indicates the belief of the causal inference algorithm about the genuine causal relationships.

2.4.3 Performance Analysis Based on Predictive Modeling

So far, we analyzed the relationship between graph vulnerability score and associated graph

metrics without making any assumptions of a prediction model. Though such analysis reveals

important insights, the observations could not be generalized for any collection of networks. Our

framework supports another set of measurements based on predictive modeling. We fit the examples

into multiple regression models, and report the accuracy on predicting the vulnerability score for an

unseen set of graphs. The target variable is the F1-score, and the feature space includes the same

set of structural properties that we studied earlier. Section 2.4.3.1 and 2.4.3.2 report the accuracy

for linear and polynomial regression models, respectively.

We prepare holdout sets of examples in two ways. First, we split data based on graph spaces,

and create three folds of data: dK, ERGM and LF. Then we perform 3-fold cross validation, and

report the performance of predictions. As an example, we train on dK space examples and test on

ERGM space examples.
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Figure 2.7: A comparison between F-test and mutual information measures. We calculate F-test
and mutual information between the vulnerability of a graph and associated structural properties
across different graph input spaces.
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Table 2.2: A comparison of the accuracy of predicting F1-score. We use linear regression model
to predict F1-score on different cross-validation graph spaces using structural properties including
density, assortativity, transitivity, average shortest path length and the percentage of degree-1 nodes.

Training Testing RMSE EVAR R2S

Synthetic Original 6.3156 -0.0020 -2.3627
Synthetic Synthetic 0.0821 0.0578 -3.9392

dK dK 0.0533 0.2162 -4.5240
dK ERGM 0.0753 -0.1867 -0.1994
dK LF 0.0392 -0.2170 -0.4052

ERGM ERGM 0.1372 -1.4304 -48.9614
ERGM dK 0.0646 0.4552 0.3288
ERGM LF 0.0297 -2.7625 -2.9118

Second, we split data based on the families of original graphs for the predictions in the same

graph space, such that we create five folds of data, one for each family of original datasets. Then

we perform 5-fold cross validation, and report metrics on average. For example, one instance of

cross-validation includes training on examples from dK graphs generated from four networks, and

tests on examples from dK graphs generated from the fifth network. We repeat the same process

for ERGM graphs as well as all synthetic graphs.

2.4.3.1 Linear Regression Model

Table 2.2 presents the residuals and the coefficients of determination for the predictions

across different cross-validation sets of data. We make three observations.

First, when traning and testing take place within the same space (i.e., train on the synthetic

spaces defined by four original datasets and test on the synthetic graph space of the fifth dataset),

the dK space enables better accuracy than the ERGM space. Moreover, the dK space enables better

accuracy than when training is done on all synthetic spaces. What this means is that the dK space

is more vulnerable to re-identification attacks than any of the other spaces. For example, the RMSE
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Figure 2.8: The performance metrics over the degree of polynomial features. We generate polynomial
and interaction features from original feature space describing graph structural properties, such
that the new feature space includes all polynomial combinations of features under the specified
polynomial degree. Performance metrics are based on the associated polynomial regression model.

value for cross-validation in the dK space (0.05) is lower than in the ERGM space (0.13). Also the

variation of the predicted vulnerability score is better explained from the features in dK than ERGM

space regression model, where EV ARdK−dK = 0.21 > 0 and R2SdK−dK > R2SERGM−ERGM . Note

that the set of subscripts represents the training and testing set in the consecutive order.

Second, training on dK spaces and testing on ERGM spaces performs poorly compared with

the case where the training is done on the ERGM space and the testing on the dK space, where

EV ARERGM−dK > EV ARdK−ERGM and R2SERGM−dK > R2SdK−ERGM (see Table 2.2). This

suggests that the ERGM space is a richer training dataset than the dK space, which means that the

synthetic graphs in this space have more variation in the graph metric values and vulnerability. In

other words, the dK space constrains more drastically the values of the graph features considered,

and thus limits the learning. This behavior is the result of the dK space definition, but may also

be the outcome of the particular dK random graph generator we used.

And third, dK is a better training set for testing on LF than the ERGM space is. This

is likely explained by the fact that the LF and the dK spaces are closer to each other than they
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are to the ERGM space. Specifically, the degree assortativity (which controls the LF space) is

an aggregate measure of the joint degree distribution that defined the dK space. Moreover, the

LF space is generated only by two datasets, both with high assortativity and clustering. The

good predictability from training on the dK space confirms again the effect that assortativity and

clustering have on graph vulnerability.

2.4.3.2 Polynomial Regression Model

In our discussion so far, we outlined the linearity of structural properties with respect to the

given vulnerability. In general, our observations suggest there is a non-linear relationship with the

target and independent variables. We try to account for such a relationship through a polynomial

regression model. First, we transform the features (i.e., structural properties) to a new polynomial

feature space. This new space includes all polynomial combinations of raw structural property

values, and all interaction terms. Figure 2.8 presents the predictive power using two metrics of

interest: EVAR and R2S (explained in Section 2.4.3), specifically to understand the variance of

graph vulnerability scores through the set of structural properties. We compare several regression

models in three polynomial feature spaces, under linear, quadratic, and quartic polynomial degrees.

Linear space is similar to the results we presented earlier in Section 2.4.3.1.

We make a number of observations. In the Synthetic training model, R2S increases signifi-

cantly in the quadratic polynomial space (Figure 2.8a). EVAR also reaches the local maximum in

this polynomial degree space. (Note that our synthetic space includes both dK and ERGM gener-

ated graphs, and average values are calculated over different cross-validation tests.) This proves the

existence of a combination effect of structural forces on explaining graph vulnerability.
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For a finer view of the graph vulnerability based on different synthetic spaces, we present

two local analyses: one related to the dK training model (Figure 2.8b) and the other related to

the ERGM training model (Figure 2.8c). In both training models, the variation of the target

variable (vulnerability) is better captured when increasing the degree of polynomial features (since

both EVAR and R2S increase). However, we observe a special case in ERGM training model (as

presented in Figure 2.8c). The predictive power of the linear model is weakened after the addition

of interactive terms in quadratic space, which does not happen in the dK training model. In a sense,

we relax the utility conserved in ERGMs by transforming to a different feature space, thus having

relatively worst predictive model.

2.5 Summary and Discussions

This chapter poses and answers a new research question: What graph properties make net-

work datasets more vulnerable to node re-identification attacks? Unlike previous related research,

we question the intrinsic vulnerability of an original graph dataset rather than any particular

anonymized version of the dataset. An answer to this question can be used both to asses the risk

of publishing an original dataset and also to guide the data practitioner in selecting anonymization

techniques that provide the appropriate tradeoff between utility and privacy.

We introduce and experiment with a framework that identifies the relationships between

graph vulnerability and graph properties. Our code is available for download at [42]. The compo-

nents of this framework include i) a quantification of graph vulnerability as measured by the success

of a re-identification attack; ii) a quantification of the relationship between graph vulnerability and

a set of graph metrics. Moreover, we instantiated this framework with a strong attack model and
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a rigorous set of tools for causality analysis. Using thousands of synthetic graphs of controlled

properties we discovered a number of phenomena.

First, under the attack model considered, there is a strong statistical dependency between

the vulnerability score and transitivity and assortativity. That is to say, successful anonymization

techniques should not attempt to preserve the assortativity and transitivity of the original graph.

In other words, one could design an anonymization technique to explicitly perturb assortativity

and transitivity for increasing graph privacy. This observation opens a new door for designing

anonymization algorithms that has a chance against strong de-anonymization attacks.

Second, there is no linear relationship between the vulnerability score and the graph metrics

other than the fraction of degree-1 nodes in the network. One reason is that the most relevant

graph metrics in network analysis are interdependent [78]. Using a larger number of graph metrics

in the Pearlian causality model should help identify a more complex causal relationship between

graph vulnerability and properties.

Third, our comparison across graphs generated by different graph model generators lead

to an important conclusion. In an early work, Hay et al. [11] observe a graph’s density as a

determinant to describe the asymptotic limit of graph vulnerability. It was also well understood

that preserving the degree distribution or the degree correlation increases graph vulnerability [41]

and thus disturbing them is a necessary condition for graph anonymization. However, our study

shows that this condition is not sufficient: in some cases, other network properties independent

of the degree distribution put node privacy at risk. This is a disturbing result for the current

understanding of graph privacy, as it means that protecting graph privacy is much harder than

previously considered [10, 11].
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One concern is whether some of our observations depend on the tools we used to implement

the components of our framework. Specifically, we mounted a strong de-anonymization attack that

led to high vulnerability scores. One could argue that a different attack model or a different feature

representation for nodes (weaker than the NDD representation we used) could lead to different

vulnerability scores that might indicate a different relation between graph vulnerability and graph

metrics. We believe this is a valid concern and it highlights the usefulness of the framework we

propose. For example, one could use our framework to derive the causal relationship between the

parameters of an attack model and the rest of variable space including the graph vulnerability and

network properties. If node degree information is guaranteed not to be known to the attacker, then

our framework instantiated with a different attack model could identify different graph metrics that

expose node identities. If there are multiple attack models, our framework can be used to infer

more sophisticated causal relationships between the graph vulnerability and relevant graph metrics.

This feedback can also be used to compare the strengths of different attack models. We think this

is a promising future work direction to which our framework can contribute significantly. However,

we empirically proved that for such an attack, assortativity and transitivity are revealing much

information about node identities. Finally, this study could be extended to understand the intrinsic

vulnerability of dynamic graphs, or graphs with node and edge attributes.

Our framework fills a gap between theoretical research and practice, and provides a uni-

fying platform for the development of new methodologies related to graph anonymization, de-

anonymization and graph vulnerability quantification. Specifically, this framework can be used

to select the particular tradeoff between acceptable vulnerability and needed utility in terms of

graph metrics. Data owners should carefully design anonymization algorithms given the require-
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ment of privacy and utility with respect to the quantified tradeoff identified by our framework.

They would re-evaluate or re-design the anonymization algorithm with such feedback. Alterna-

tively, this framework can be used to empirically calibrate theoretical estimations of privacy, such

as techniques based on differential privacy. In a different context, this framework could be used to

inform a network alignment problem about the possible conditions for a perfect matching.
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Chapter 3: Privacy of Labeled Networks2

As shown in the previous chapter, we identify which structural properties contribute most

to graph vulnerability. However, in practice, most networks have node attributes such as labels

that identify nodes as cheaters or noncheaters in online gaming platforms [89]. The effects of node

attributes on the risks of node re-identifications are not yet well understood. While intuitively any

extra piece of information can be a danger to privacy, a rigorous understanding of what topological

and attribute properties affect the re-identification risks is needed. In cases such as information

dissemination, node attributes may be informed by the local graph topology. How does the interplay

between topology and node attributes affect node privacy?

This chapter assesses the additional vulnerability to re-identification attacks posed by the at-

tributes of a labeled graph. We consider exactly one binary attribute to understand the lower bound

of the damage that node attributes inflict. We focus our empirical study on the interplay between

topology and labeling as a leverage point for re-identification. While most efforts for re-identification

attacks are meant to show the vulnerability or resilience of a particular anonymization technique,

this work is different, as it focuses on understanding in which conditions node re-identification is fea-

sible, given the network topology and node attributes. Consequently, whether the network topology

is original or anonymized is irrelevant for our study. We extend the privacy framework as introduced

in the previous chapter for both topological and attribute information to re-identify nodes. Our

study involves real-world graphs and synthetic graphs in which we control how labels are placed
2This chapter was previously published in [31, 32]. Permission is included in Appendix A.
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relative to ties to mimic the ubiquitous phenomena of homophily—the tendency to connect with

similar people—found in social graphs [90].

Our empirical results show that the vulnerability to node re-identification depends on the

population diversity with respect to the attributes considered [31]. Using information about the

distribution of labels in a node’s neighborhood provides additional leverage for the re-identification

process, even when labels are rudimentary. In this study, we show more evidence on this phenomenon

based on the well-studied Susceptible-Infectious (SI) epidemic model. Furthermore, we quantify the

relative importance of attribute-related and topological features in graphs of different characteristics.

The remainder of this chapter is organized as follows. Section 3.1 outlines the related work.

The improved privacy framework is presented in Section 3.2. Section 3.3 describes the characteristics

of the datasets we used in our empirical investigations. We present our results in Section 3.4 and

discuss our contributions in Section 3.5.

3.1 Related Work

Recently, there have been efforts to incorporate node attribute information into deanonymiza-

tion attacks. Gong et al. [91] evaluate the combination of structural and attribute information on

link prediction models. Attributes not present may be inferred through prior knowledge and network

homophily. Qian et al. [92] apply link prediction and attribute inference to deanonymization by

quantifying the prior background information of an attacker using knowledge graphs. In knowledge

graphs, edges not only represent links between nodes but also node-attribute links and link rela-

tionships among attributes. The deanonymization attack in [93] maps node-attribute links between

an anonymized graph and its auxiliary. In addition to structural similarity, nodes are matched by
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attribute difference, the union of the attributes of the node in the anonymized and auxiliary divided

by their intersection.

Several researchers propose theoretical frameworks to examine how vulnerable or deanonymiz-

able any (anonymized) graph dataset is, given its structure [52, 56, 55, 45]. However, some tech-

niques are based on unrealistic data models (e.g., Erdös-Rènyi (ER) models [52]), while others

make impractical assumptions about the seed knowledge [55]. Ji et al. [45] also introduced a con-

figuration model to quantify the deanonymizablity of graph datasets by considering the topological

importance of nodes. The same set of authors analyzed the impact of attributes on graph data

anonymity [93]. They show a significant loss of anonymity when more node-attribute relations

are shared between anonymized and auxiliary graph data. Specifically, they measure the entropy

present in node-attribute mappings available for an attacker. As the entropy decreases, the graph

loses node anonymity.

The main aspects distinguishing this study from existing works are as follows: i) In our work,

we study the inherent conditions in graphs that provide resistance/vulnerability to a general node

re-identification attack based on machine learning techniques. ii) To the best of our knowledge, this

is the first work that quantifies the privacy impact of node attributes under an attribute attachment

model biased towards homophily. iii) We analyze the interplay between the intrinsic vulnerability

of the graph structure and attribute information.

3.2 Modeling Privacy Based on Network Properties and Node Labels

Our main objective is to quantitatively estimate the vulnerability to re-identification attacks

added by node attributes. In particular, we ask: Given a graph topology, how much better does a
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node re-identification attack perform when the node attributes are included in the attack compared

to when there is no node attribute information available to the attacker?

We are interested in measuring the intrinsic vulnerability of a graph with attributes on

nodes, in the absence of any particular anonymization technique on topology or node attributes.

The intuition is that particular graphs are inherently more private: for example, in a regular graph,

nodes are structurally indistinguishable. Adding attributes to nodes, however, may contribute extra

information that could make the re-identification attack more successful. Consider another example,

in a highly disassortative network (such as a sexual relationships network), knowing the attribute

values (i.e., gender) of a few nodes will quickly lead to correctly inferring the attribute values of the

majority of nodes, and thus possibly contributing to the re-identification of more nodes. Thus, we

also ask the following question in this study: How does the distribution of node attributes affect the

intrinsic vulnerability to a re-identification attack of a labeled graph topology?

To answer these question, we improved the machine learning-based re-identification attack

model from our previous work [30]. We use a similar threat model as before that aims at finding

a bijective mapping between nodes in two different labeled graphs (Section 3.2.1). We mount a

machine-learning based attack by employing additional node attribute features, in which the algo-

rithm learns the correct mapping between some pairs of nodes from the two graphs, and estimates

the mapping of the rest of the dataset (Section 3.2.2).

3.2.1 The Attack Model

The threat model we consider is the classical threat model in this context [52]. The attacker

aims to match nodes from two networks whose edge sets are correlated. We assume each node
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is associated with a binary valued attribute, and this attribute is publicly available. Common

examples of such attributes are gender, professional level (i.e., junior or senior), or education level

(i.e., higher education or not).

For clarity, consider the following example: an attacker has access to two networks of indi-

viduals in an organization that represent the communication patterns (e.g., email) and friendship

information available from an online social network. Individuals in the communication network are

described by professional seniority (e.g., junior or senior), while individuals in the friendship net-

work are described by gender. These graphs are structurally overlapping, in that some individuals

are present in both graphs, even if their identities have been removed. The attacker’s task is to

find a bijective (i.e., one-to-one) mapping between the two subsets of nodes in the two graphs that

correspond to the individuals present in both networks.

We assume that the adversary has a sanitized graph Gsan that could be associated with an

auxiliary graph Gaux for the re-identification attack (as depicted in Figure 3.1). As in the scenario

discussed above, Gsan could be the communication network, while Gaux is the friendship network

of a set of individuals in an organization. We use the same algorithm as presented in Section 2.2.2

to find the bijective mapping between Gsan and Gaux.

3.2.2 Topology and Node Labels

Since we are employing machine learning techniques to re-identify nodes in a graph, we

need to represent nodes as feature vectors. We define the node u’s features using a combination

of two vectors made up from its neighborhood degree distribution (NDD) (as explained in the

Section 2.2.2.2) and neighborhood attribute distribution (NAD) (as depicted in Figure 3.2).

49



Figure 3.1: The overview of generating identical and non-identical node pairs. The nodes in the
overlap are identical to both Gaux and Gsan, but they have different structural characteristics.

NAD is defined by NADq
u[i] which represents the number of u’s neighbors at distance q with

an attribute value i. It was shown experimentally that the use of neighbor attributes as features

often improves the accuracy of edge classification tasks [94].

We use the notation GS to represent the prediction results from the input features made up

from the topology (e.g., NDD). GS(LBL) to represent features from both the topology and attribute

information (e.g., concatenation of NDD and NAD vectors).

Note that the nodes in Gsan ∩ Gaux, common to both graphs, can be recognized as being

the same node (identical) in the two graphs based on their node identifier. Non-identical nodes are

unique to each Gsan and Gaux and would not exist in the overlap. In the classification task, we wish

to output 1 for an identical node pair and 0 for a non-identical node pair. This is the ground truth

against which we measure the accuracy of the learning algorithms. We generate examples for the

training phase of the deanonymization attack by randomly picking node pairs from the sanitized

(Gsan) and the auxiliary (Gaux) graphs, respectively.

As described previously in Section 2.2.2, we train a classifier to differentiate two nodes as

identical or not. For each graph, we take ` = 1000 balanced sub-samples randomly and perform
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Figure 3.2: Example feature vector made up from NDD and NAD vectors. In the NAD vector, each
element corresponds to the number of nodes with the given attribute. Both 1-hop and 2-hop NADs
are calculated and merged. Node x has one 1-hop neighbor node, and two 2-hop neighbor nodes
with the attribute Red. Note that the node value represents the associated degree, and the border
color represents the node attribute Red or Blue.

5× 2 cross-validation to evaluate the classifier using the mean F1-score. We thus build two vectors

of mean F1-scores, each of size ` = 1000, one for the labeled (GS(LBL)) and one for the unlabeled

network topology (GS). An important aspect of these vectors is that they are related in the sense

that the ith element in one vector represents the same sample as the ith element of the other vector.

This is important for the pairwise comparison of the two mean F1-score vectors.

We perform a standard T-test on these two vectors and report the T-statistic value. The

T-statistic value is a measure of how close to the hypothesis an estimated value is. In our case,
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the hypothesis is the prediction accuracy of the node identities in the unlabeled graph (GS) and

the estimated value is the prediction accuracy in the labeled graph (GS(LBL)). Thus, a large T-

statistic value implies a significantly better prediction accuracy of node identities in GS(LBL) than

in GS. In such cases, we can say that the network with node attributes is more vulnerable to node

re-identification. This value serves as our statistical measurement to quantify the vulnerability cost

of node attributes.

3.3 Datasets

Because our work is empirically driven, a larger set of test datasets promises a better un-

derstanding of the relations between vulnerability to re-identification attacks and the particular

characteristics of the node attributes (such as fractions of attributes of a particular value or the

assignment of attributes to topologically related nodes). In this respect, real datasets are always

preferable to synthetic ones, as they potentially encapsulate phenomena that are missing in the

graph generative models. As an example, until very recently, the relation between the local degree

assortativity coefficient and node degree was not captured in graph topology generators [87].

However, relying only on real datasets has its limitations, due to the scarcity of relevant data

(in this case, networks with binary node attributes) and the difficulty of covering the relevant space

of graph metrics when relying only on available real datasets. Thus, in this work, we combine real

networks (described in Section 3.3.1) with synthetic networks generated from the real datasets. For

generating synthetic labelled networks, we employ ERGMs [81, 82] and a controlled node-labeling

algorithm as described in Section 3.3.2.
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3.3.1 Real World Networks

We chose six publicly available datasets from four different contexts and generated eight

networks with binary node attributes.

• polblogs [95] is an interaction network between political blogs during the lead up to the 2004

US presidential election. This dataset includes ground-truth labels identifying each blog as

either conservative or liberal.

• fb-dartmouth, fb-michigan, and fb-caltech [96] are Facebook social networks extant at three

US universities in 2005. A number of node attributes such as dorm, gender, graduation year,

and academic major are available. We chose two such attributes that could be represented as

binary attributes: gender and occupation, whereby occupation we could identify the attribute

values “student” and “faculty”. From each dataset, we obtained two networks with the same

topology but different node attribute distributions.

• pokec-1 [97] is a sample of an online social network in Slovakia. While the Facebook sam-

ples are university networks, Pokec is a general social platform whose membership comprises

30% of the Slovakian population. pokec-1 is a one-fortieth sample. This dataset has gender

information available as a node attribute.

• amazon-products [98] is a bi-modal projection of categories in an Amazon product co-purchase

network. Nodes are labeled as “book” or “music”, edges signify that the two items were

purchased together.

As Table 3.1 shows, the networks generated from these datasets have different graph char-

acteristics. For example, the density (d) of the graphs varies across three orders of magnitude,
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Table 3.1: Graph properties of the real network datasets. All graphs are undirected, and nodes are
annotated with a binary valued attribute. E.g., nodes in the polblogs network have the attribute
party with values; conservative and liberal. For simplicity, binary values are presented using the
notation of R and B, together with the distributions of such values over nodes and edges. p and τ
present the estimated parameter values of the attraction model. Density (d̄) is the fraction of all
possible edges, transitivity (C) is the fraction of triangles of all possible triangles in the network.
degree-assortativity (r) measures the similarity of relations depending on the associated node degree.
Average path length (κ) depicts the average shortest path length between any pairs of nodes.

Network Number of nodes Number of edges
p τ d̄ C r κ

R(%) B(%) R−R(%) B −B(%) R−B(%)

polblogs 1224 16718
0.02 0.22 −0.22 2.49(party) 48 52 44 48 8 0.48 0.84

fb-caltech 769 16656
0.05 0.29 −0.06 1.33(gender) 91.5 8.5 92.8 0.2 7 0.08 0.52

(occupation) 72 28 69 8 23 0.28 0.42

fb-dartmouth 7694 304076
0.01 0.15 0.04 2.76(gender) 86.5 13.5 83.2 0.9 15.9 0.14 0.34

(occupation) 62 38 58 18 24 0.38 0.5

fb-michigan 30147 1176516
0.0026 0.13 0.115 3.05(gender) 92.2 7.8 90.5 0.2 9.3 0.08 0.37

(occupation) 77.5 22.5 72 9 19 0.22 0.46

pokec-1 265388 700352
0.46 0 2× 10−5 0.0068 −0.044 5.66(gender) 46 54 18.6 22.4 59

amazon-products 303551 835326
0.18 0.99 1.8× 10−5 0.21 −0.06 17.42(category) 82 18 83.4 16.4 0.2

while degree assortativity oscillates between disassortative (for polblogs, r = −0.22, where there are

more interactions between popular and obscure blogs than expected by chance) to assortative (as

expected for social networks). All topologies except for amazon-products have small average path

length.

This wide variation in graph metrics values is what motivated our choice for these set of real

networks. We opted to include the three Facebook networks from similar contexts to also capture

more subtle variations in network characteristics.
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3.3.2 Synthetic Networks

In order to be able to control graph characteristics and node attribute distributions, we

also generated a number of synthetic graphs comparable with the real datasets just described. The

graph generation included two aspects: topology generation, for which we opted for ERGMs, and

node attribute assignments, for which we implemented the technique proposed in [99]. We discussed

Exponential-family random graph models (ERGMs) in the previous chapter (Section 2.3.2.2). As

before, we generate ERGM synthetic networks based on clustering coefficient (ERGM-cc), average

path length (ERGM-apl), and assortativity (ERGM-dc) of the original networks using the R [83]

and the statnet suite [84].

We use the “attraction” model [99] to generate binary node attributes. This model parame-

terizes a labeled graph with a tendency towards homophily (ties disproportionately between those

of similar attribute background). In the basic case of a binary attribute variable and a constant

tendency to inbreed, two parameters, p and τ , both in the (0,1) interval, characterize the distri-

bution of ties within and between the two groups. The first is the proportion of the population

that takes on one value of the attribute (with 1 − p, the proportion taking on the other value).

The second parameter, the inbreeding coefficient or probability, expresses the degree to which a tie

whose source is in one group is "attracted" to a target in that group. When τ = 0, there is no

special attraction and ties within and between groups occur in chance proportions. When τ > 0,

ties occur disproportionately within groups, increasing as τ approaches 1. Given a total number

of ties, values for p and τ determine the number of ties/edges that are between groups, namely,

δ = |E| × 2 × (1 − τ)p(1 − p). Intuitively, p captures the diversity of attribute values in the node

population (with p = 0.5 showing equal representation of the attributes) while τ captures the ho-
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mophily phenomenon (that functions as an attraction force between nodes with identical attribute

values).

We report the p and τ values for the original network as shown in Table 3.1. The homophilic

attraction metric τ varies between 0 in pokec-1 (thus, no higher than chance preference for social

ties with people of the same gender in Slovakia) to 0.99 in amazon-products (books are purchased

together with other books much more strongly than given by chance). The diversity metric p

varies between the over representation of males in the US academic Facebook networks (8% female

representation) to an almost perfect political representation in the polblogs dataset (where p = 0.48).

Note that, we only consider p as the minimum proportion of two node groups due to the symmetric

nature of attributes in our experiments.

In the process of generating synthetic node attributes, we first randomly assign two arbitrary

values (i.e., R and B) as labels to all the nodes in the graph for a given p, 1−p split. Then, we draw

an R node and a B node at random and swap labels if it would decrease the number of R-B ties.

This process would converge when the total number of cross-group ties reduce to δ for a particular

value of τ .

Figure 3.3 shows the proportion of cross-group ties on the synthetic labelled networks gen-

erated from polblogs topology. The proportion of cross-group ties is proportional to p, while it is

inversely proportional to τ . When p reaches its maximum (pmax = 0.5 due to the symmetric nature

of binary attribute values), the proportion of cross-group ties is larger at minimum inbreeding co-

efficient τ . It should be noted that convergence is not guaranteed for all possible combinations of p

and τ . The swapping procedure holds constant all graph properties except the mapping of nodes to

labels, and consequently, it may not be possible to find a mapping of nodes to labels that achieves
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Figure 3.3: Proportion of cross group ties. We report the proportion of cross group ties on synthetic
labeled networks generated from the polblogs network. We use the "attraction" model [99] to
generate binary node attributes.

a target number of ties between groups (when that number is low as it is for higher values of τ).

Table 3.2 presents the graph characteristics of the synthetically generated labeled graphs.

3.4 Empirical Results

Our objective is not to measure the success of re-identification attacks on original datasets

in which node identities have been removed: it has been demonstrated long ago [48] that naive

anonymization of graph datasets does not provide privacy. Instead, our objective is to quantify the

exposure provided by node attributes on top of the intrinsic vulnerability of the particular graph

topology under attack. In our experiments, we leverage the real and synthetic networks described

above. We use the methodology described in Section 3.2 to re-identify nodes using features based
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Table 3.2: Basic statistics of generated ERGM networks. Note that dc, cc and apl define the set of
parameters used to generate ERGM graphs based on assortativity (degree correlation), clustering
coefficient, and average path length, respectively. We generated a total of ≈ 500 million identical
and non-identical node pairs over three ERGM graph spaces of the six real social network datasets.
S is the population of generated node pairs concerning a given graph topology.

Network ERGM d C r κ |S| (millions)

polblogs
dc 0.02 0.03 .08 2.52 5.5
cc 0.02 0.33 -0.02 2.69 13.1
apl 0.02 0.10 -0.06 2.49 11.5

fb-caltech
dc 0.06 0.08 0.11 2.13 1.2
cc 0.06 0.42 -0.06 2.73 4.1
apl 0.06 0.07 0.11 1.97 1.2

fb-dartmouth
dc 0.01 0.17 0.07 2.66 14.5
cc 0.01 0.24 0.04 2.77 13.2
apl 0.01 0.20 0.04 2.70 14.2

fb-michigan
dc 0.003 0.02 0.12 3.28 38.4
cc 0.002 0.20 0.12 3.52 39.9
apl 0.002 0.20 0.12 3.64 38.2

pokec-1
dc 2.02E-5 0.06 -0.04 5.60 29.5
cc 2.05E-5 0.07 -0.04 5.84 29.3
apl 2.04E-5 0.06 -0.04 5.63 27.3

amazon-products
dc 1.82E-5 0.37 -0.06 11.86 43.7
cc 1.82E-5 0.40 -0.06 13.52 72.5
apl 1.82E-5 0.39 -0.06 13.47 74.3

on both graph topology and node attributes. Our first guiding question is thus: How much risk of

node re-identification is added to a network dataset by its binary node attributes?

3.4.1 The Vulnerability Cost of Node Attributes

Figure 3.4 presents the accuracy of node re-identification in the original graph topology

GS and in the same topology augmented with node attributes GS(LBL). As expected, the re-

identification attack performs (generally) better when node attributes are used in the attack. Sur-

prising to us, however, is the relatively small vulnerability cost that node attributes introduce. For

example, the occupation attribute has a barely noticeable benefit to the attacker in fb-dartmouth.

More interestingly, however, the same attribute performs differently for the other two Facebook net-
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Figure 3.4: Accuracy of predictions over original networks. Mean accuracy values are shown for real
network datasets on GS and GS(LBL) along with the T-statistic which describes the difference in
means of the GS and GS(LBL) vectors of prediction probabilities statistically. The network with
node attributes is more vulnerable to node re-identification when the T-statistic is positive and
large.

works considered: for fb-caltech the occupation label functions as noise, leading to a small decrease

in the F1-score. For fb-michigan, on the other hand, the occupation label significantly improves the

attacker’s performance.

Another observation from this figure is that different node attributes applied to the same

topology have different outcomes: see, for example, the case of the fb-michigan topology, where the

difference between the impacts of the gender and the occupation attributes is the largest. We thus

formulate a new question: What placement of attributes onto nodes reveal more information? To un-
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derstand how the placement of attribute values on nodes affects vulnerability, we generate synthetic

node attributes in a controlled manner by varying p (the diversity ratio) and τ (homophily coeffi-

cient). This allows us to study the effect of these parameters on node re-identification. Figure 3.5

presents the T-statistics of the F1-scores for node re-identification attacks on the original topology

vs. labeled versions of the original topology. In addition to the original topologies, Figure 3.5 also

presents results on various synthetic networks generated as presented in Section 3.3.2.

We observe three phenomena: First, it appears that p is positively correlated with the

T-statistic value measuring the re-identification impact of attributes. That is, the more diversity

(that is, the larger p), the more vulnerable to re-identification the labeled nodes become on average.

Intuitively, in a highly skewed attribute population, while the minority nodes will be identified

quicker due to node attributes, the majority remains protected. On the other hand, when p = 0.5,

a network has two equal-sized sets of nodes where each set takes one of two attribute values. This

is explained by the fact that the NAD feature vector captures more diverse information in the

attributes of neighbots when p is larger. This is also the explanation for why the node attributes

contribute so much more to vulnerability in the polblogs dataset, which has a large diversity (p =

0.48) (thus, almost equal numbers of conservative and liberal blogs). Note that the effect of p on

the added vulnerability remains consistent across all topologies (real and synthetic) tested.

The second observation is that there is no visible pattern on how the inbreeding coefficient

(τ) influences the vulnerability added by binary node attributes. While this is disappointing from

the perspective of story telling, it is potentially encouraging for data sharing, as it suggests that

datasets that record homophily (or influence, the debate is irrelevant in this context) do not have

to be anonymized by damaging this pattern. For example, the privacy of a dataset that records an
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Figure 3.5: T-statistic between prediction scores of GS(LBL) and GS networks. GS represents the
network structure and GS(LBL) represents the networks with varying attributes. Results are shown
across different structures of original and ERGM graphs. Each ERGM graph is presented using the
generated parameters of dc (degree-correlation), cc(clustering coefficient) and apl (average path
length). We skip presenting fb-dartmouth in this figure to reduce visual clutter.
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information dissemination phenomenon could be provided without perturbing the cascading-related

ties.

The third class of observations is related to the relative effect of the topological characteristics

on the added vulnerability. Both amazon-products and pokec-1 are orders of magnitude sparser

than the other datasets considered. This means that the topological information available to the

machine learning algorithm is limited. In this situation, the addition of the attribute information

turns out to be very significant: the T-statistic values for these datasets are significantly larger than

for the other datasets, with values over 400 in some cases. Another topological effect is noticed

when comparing the real pokec-1 topology with the ERGM-generated ones in Figure 3.5d: the

node attribute contributes much more to the vulnerability of the original topology compared to

the synthetic topologies. The reason for this unusual behavior may lay in the different clustering

coefficients of the networks, as seen in Tables 3.1 and 3.2: the ERGM-generated topologies have

clustering coefficients one order of magnitude higher than the original topology (for the same graph

density), which leads to more diverse NDD feature vectors for the networks with higher clustering

and thus richer training information. This in turn leads to better accuracy in node re-identification in

the unlabeled ERGM topologies (with higher clustering) than in the original topology. For example,

the maximum F1-score for the ERGM-dc topology is 0.92 while for the original it is 0.76 in pokec-1.

Thus, the relative benefit of the node attribute was significantly higher when the topology features

were poorer.

3.4.2 The Impact of Topology

Figure 3.6 presents the importance of features that are used in node re-identification. A high

importance score represents a feature that is responsible for accurately classifying a large proportion
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of examples. We make three observations from this figure. First, most of the NAD features that

represent node attribute information prove to be important in all datasets.

Second, among the NDD features, only a small number contributes consistently to accurate

prediction. As shown in Figures 3.6c - 3.6i, the first bin of 1-hop and 2-hop NDD vectors contribute

the most. That is, a high impact on the re-identification of a node is brought by the number of

its neighbors with degrees between 1 and 50. Even in large networks such as pokec-1 and amazon-

products with a larger range of node degrees, this behavior is observed.

Third, Figure 3.6 suggests what features explain the effect of diversity p on node re-

identification in labeled networks. On datasets with large diversity (such as polblogs or pokec-1 ),

the topological information contributes less than on datasets with low diversity (such as fb-caltech

(gender)). This is because high diversity correlates to richer NAD feature vectors, and thus the

relative importance of the NAD features increases.

3.4.3 Epidemic and the Risk of Node Re-identification

In this section, we consider the scenario of node attribute placement under the constraint

of an epidemic process. We use the Susceptible-Infectious (SI) [100] model to generate an epidemic

process on the original graph topology. In the SI model, individuals are initially susceptible with

the exception of a small fraction of the population who is infectious. In contact with an infec-

tions individual, a susceptible individual becomes infectious with the probability β. Once infected,

individuals stay infected and infectious throughout their lifetime.

We use this model to assign binary attributes (i.e., susceptible and infectious) to the nodes

in the graph. In each experiment, we select the 0.1% highest degree nodes as infectious to initialize
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Figure 3.6: The importance of features across original networks. NDD features are presented in the
index order of node (N), hop (H) and bin (B). As an example, the feature N1-H2-B1 presents the
first bin of the NDD2

1[k] vector. NAD features are presented in the index order of node (N), hop
(H) and binary attribute value ∈ R,B. As an example, the feature N1-H2-R presents NAD2

1[R].
Any feature that does not contribute to the final prediction decision with at least 1% of the samples
in average is omitted.
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the epidemic. We vary the infection probability β between 0 and 1. We mount the machine-learning

attack to each epidemic graph independently on the graph topology GS and on the same topology

augmented with binary node attributes GS(LBL). We make two assumptions in this task. First,

we assume that the graph topology remains static during the epidemic process. Second, we assume

that the adversary does not have any prior information about other epidemic graphs in the series.

We calculate the significance of the vulnerability scores in GS(LBL) compared with GS via

a standard T-test, and report the T-statistic value per each epidemic graph. Figure 3.7 shows the

T-statistic values over multiple steps in the epidemic process including other characteristics (e.g.,

the node infection probability β, the estimated homophily τ observed in the network).

We observe the same phenomena on the correlation between population’s diversity (p) and

the T-statistic values over the epidemic graphs. However, the T-statistic values show different

patterns depending on the infection probability β. Note that, the population’s diversity (p) increases

to a local maximum in the initial time-steps, and then drops in later time-steps. This is an intuitive

observation given the properties of SI model [100].

When the epidemic grows slowly (i.e., low infection probability), the T-statistic value also

increases at a slower rate. On the other hand, when the epidemic outbreaks at a faster infection

rate, the T-statistic value also increases at a higher rate and achieves a relatively larger peak value.

For the fb-caltech network, the T-statistic value reaches a peak value of 10 in four infection steps

for β = 0.1, while the T-statistic value reaches a peak value of 50 in two infection steps for β = 0.9.

Interestingly, the most diverse population in fb-caltech network is also observed after four infection

steps for β = 0.1, and two infection steps for β = 0.9 (as shown in Figure 3.7d). In polblogs,

T-statistic values reach peak values of 31 and 36 for the infection rates of 0.1 and 0.9, respectively
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(as shown in Figure 3.7h). The polblogs population becomes more diverse in the similar number of

infection steps given the respective infection rate.
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Figure 3.7: Graph vulnerability over a series of epidemic graphs under SI model. During each
infection step, a susceptible node becomes infected with probability β if in contact with an infected
node. (a,e) the rate of infection; (b,f) p – diversity ratio which measures the proportion of nodes
with one binary attribute value; (c,g) τ – estimated value of homophily observed in the network;
and (d,h) the T-statistic value between prediction scores of GS(LBL) and GS. T-statistic values
show how the extra vulnerability due to binary attributes changes over iterations of the epidemic
process.

3.5 Summary and Discussion

This chapter shows that the addition of even a single binary attribute to nodes in a network

increases the vulnerability to node re-identification. The increase in vulnerability derives from

the fact that the machine learning attack makes use of the relationship between topology and

the distribution of node labels. Using information about the distribution of labels in a node’s

neighborhood provides additional leverage for the re-identification process, even when the labels are

rudimentary.
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Furthermore, we find that a population’s diversity with regard to the binary attribute con-

sistently degrades anonymity and increases vulnerability. Diversity means a more even distribution

of the binary attribute, which produces a more varied set of neighborhood distributions that nodes

can exhibit. Consequently, nodes are more easily distinguished from one another by virtue of their

differing neighborhood distributions of labels.

This observation is critical for network datasets for which the node attributes are the result

of an epidemic process. If the epidemic process is monitored, an adversary could observe the node

states and their changes repeatedly over multiple time steps. In such a scenario, the adversary

could mount a strong node re-identification attack. The techniques presented in this chapter can

be applied to build strong anonymization techniques for such cases. Specifically, our techniques can

be used to estimate the rate of anonymity loss over the lifespan of an epidemic process and more

efficiently guide data owners in the process of network data anonymization.

Another outcome of this work is that there is no consistent discernible impact of homophily,

as measured by the inbreeding coefficient, on vulnerability. Our procedure for investigating the

impact of homophily simply involves swapping labels without disturbing ties. Therefore, both local

and global (unlabeled) topologies remain constant as we decrease the number of cross-group ties to

achieve a target value implied by a particular inbreeding coefficient for a given proportional split

along the binary attribute. This procedure disturbs the local labeled topology, but because the

machine learning attack uses information from that local topology, it apparently can adapt to the

changes and make equally successful predictions regardless of the value of the inbreeding coefficient.
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Chapter 4: Simulating Social Media Activity

The second part of this dissertation focuses on predicting social media activity. Our goal is to

develop techniques for high-fidelity simulations of information spread in online social environments.

A reliable simulator can be useful to foresee the spread of information in many real world scenarios.

For example, terrorist groups use “Pump and Dump” schemes to raise funds via artificially promoting

a digital currency through social media environments [101]. These groups “pump up” specific digital

currencies on Twitter to take advantage of short bursts in prices, before they “dump” the currency

for a profit [102]. A simulator that is able to predict spikes in social media activity can be used to

regulate the “Pump and Dump” attempts. In another instance, a group of Twitter accounts that

support the Venezuelan regime amplified certain topics and hashtags to discredit Juan Guaidó, the

opposition leader, after the controversial 2019 Venezuelan national election [4]. These attempts were

able to manipulate the trending topics on Twitter to control what can be seen by the international

community [103]. We can use a simulator to control the spread of certain topics in future discussions.

Such a simulator can also be used to evaluate intervention techniques to encourage engagement (e.g.,

in the case of health information dissemination) or limit misinformation (e.g., by evaluating how

misinformation diffuses if some accounts are prevented from engaging).

However, developing a reliable social simulator is not trivial [104, 105]. As shown in Fig-

ure 4.1, social media activity can be described at different granularities. The finest granularity of

predictions describes when a social media message is posted, who posts the message, what it is about
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(topic), and whether it is in response to another message. The complexity of the problem increases

when the granularity of the predictions becomes finer. For example, it is easier to predict the volume

of social media discussions in a given time interval (when) than predicting who would interact with

such discussions. However, predicting exactly which user will post or reshare a message is a difficult

(if at all possible) task based on only observing platform activity. For example, Bollenbacher et

al. [106] argue that predicting microscopic user actions is difficult in long-lived online conversations.

This limitation is mainly due to the accumulation of errors in long range simulations. In addition,

social media content changes rapidly over time as it is subject to both internal (e.g., opinion leaders)

and external (e.g., street violence, natural disaster) influences. Thus, a reliable simulator needs to

realistically respond to internal and external stimuli.

One distinctive feature of a simulator is the ability to forecast social media activity in future

timesteps without relying on the ground truth in the previous time step. This capability can be

thought as generalizing single timestep predictions to hundreds of future timestep predictions. This

generalization is also associated with the granularity of predictions that one seeks to achieve. For

example, one needs to predict whether a particular user is going to post a message tomorrow, or

some day within the next week. In another instance, one can develop a timeseries regression model

to predict the volume of activities in the next two weeks without relying on any ground truth

information in the testing period.

The reliability of a simulator can be measured by different metrics. For example, timeseries

predictions can be evaluated by the error between the prediction and ground truth. The interaction

between different users can be evaluated by comparing the structural properties of the user inter-

action network with the ground truth. The performance of simulators is often compared against a
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Figure 4.1: The granularity of predictions in decreasing order of complexity. Social media prediction
tasks are grouped based on different problem domains addressed in the literature.

baseline model. While there are several ways to create a baseline model for social media simulations,

repeating the most recent records in the future is competitive [107].

In this chapter, we first discuss the related attempts that address various parts of the social

media activity prediction (Section 4.1). Finally, we explain two scenarios that motivate the design of

social simulators presented in this dissertation (Section 4.2). This chapter provides the background

for the contributions made in subsequent chapters.

4.1 Related Work

Related work has looked at pieces of the simulation problem using a variety of social media

datasets. We group the related work on simulating social media activity into four main problem

domains: i) timeseries forecasting, ii) cascade prediction, iii) recommendation systems, and iv)
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network link prediction. We map different granularity of social media activity predictions to these

problem domains as shown in Figure 4.1.

4.1.1 Timeseries Forecasting

Previous studies developed many regression methods for the timeseries forecasting tasks [108].

Popular statistical methods include Exponential Smoothing (ES) and the Autoregressive Integrated

Moving Average (ARIMA). Several deep learning methods such as Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) have been proposed to deal with both univariate

and multivariate timeseries prediction. These generalized methods are applicable to the problem of

forecasting the volume of social media discussions over time.

Agent-based-modeling (ABM) techniques use both statistical and deep learning timeseries

regression methods to forecast individual user activity streams [107]. For example, Abdelzaher et

al. [107] represent each user’s activity by a timeseries of K elements, where each element represents

the user activity in an arbitrary time slot (e.g., hours, days, etc.). They used both ARIMA and deep

neural networks (such as CNN, and RNN) to predict the next K elements of the timeseries. This

approach has several limitations. First, they implemented separate models to capture the activity

streams of different users. This approach did not scale well when there are millions of users who

participate in social media discussions. Second, the majority of users have very few actions, thus

making the timeseries very sparse. One way of dealing with this issue is to group users by their

activity level. For example, given an activity threshold, we can group users into two sets of active

and sparse acting users. While there are rich activity patterns that exist for active users, the actions

of inactive users are more likely to be irregular and sparse. In their experiments, Abdelzaher et

al. [107] showed competitive performance for sparse acting users when repeating elements of the
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past timeseries as predictions of the future. Third, the optimal granularity to define a time slot is

different for differently active users. For example, there are hyper active users who share messages

frequently within hourly intervals, while others share very few messages within a day [109]. While

the granularity of a day seems an optimal choice in general since there are many inactive users in

social media environments [110], it would not capture the hourly activity patterns of hyper active

users. These smaller granular time predictions are important for scenarios like "Pump and Dump"

schemes, where specific groups promote digital currencies on Twitter in short time intervals [102].

A similar challenge is to capture bursty Twitter activity that occur within minutes or hours during

exceptional events (e.g., NBA finals) [111].

Graph Convolutional Networks (GCNs) were proposed for univariate timeseries forecast-

ing [112, 113]. One such popular architecture is called Diffusion Convolutional Recurrent Neural

Networks (DCRNN). This technique was originally proposed for traffic forecasting and claimed to be

general on any univariate timeseries forecasting [112]. Hernandez et al. [109] applied this technique

on multiple social media datasets, and showed its poor performance for forecasting user activity

timeseries. They provide lessons similar to Abdelzaher et al. [107] as the performance degrades

depending on the heterogeneity of user activity. A major understanding is that sparse user activity

patterns remain challenging to predict with different forecasting methods.

4.1.2 Cascade Prediction

Many studies tried to predict the popularity of particular social media messages (what)

over time (when) [114]. The popularity prediction task is usually defined as finding the number of

reposts that an original message receives in discrete time intervals [115]. Feature-based methods

often utilize hashtags, URLs, mentions, sentiment and topics as textual features extracted from
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the original messages [116]. Sentiment features are shown to be most useful to predict message

popularity [117, 118]. For example, a message becomes more popular when it is associated with

negative sentiment [119]. Some works [115, 120, 121] showed that the usefulness of textual features

depends on the spread of the content under consideration. In one study [115], content features (e.g.,

title, caption) are shown to be weak predictors for the popularity of images shared on Facebook. On

the other hand, user profile features (e.g., followers, age, etc.) are shown to be more important than

content features [120]. Other research suggests that social network structural features (e.g., mean

degree, cascade height) and temporal features (e.g., time elapsed, maximum/mean time decay) are

effective as user features for the popularity prediction tasks [122]. Several works show the significant

advantage of using temporal features in the popularity prediction task [123, 124]. Temporal features

are shown to be more useful in smaller cascades than in larger cascades [125].

Many previous works showed that predicting the popularity of a message is not trivial [114].

Later, it was shown that the initial popularity of the message is useful to predict the final state of

popularity [126, 127, 106, 128]. Based on this understanding, several methods were developed using

deep learning algorithms [126, 15] to predict multiple dimensions of message popularity (e.g., cascade

size, shape, virality etc.) given the initial message growth. Embedded-IC [129] embeds cascade nodes

in a latent diffusion space to predict the temporal activation of a node. DeepCas [126] proposed a

diffusion-embedding framework to predict the incremental growth of a cascade. Both Embedding-IC

and DeepCas exploit the paths in a cascade to improve the accuracy of the prediction task. Zayats

et al. [130] proposed a graph-structured LSTM model to predict the popularity of Reddit comments

in terms of the votes they received. This model was able to distinguish the controversial comments

from the positive comments with the help of words associated with humour and emotion categories.
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Techniques that predict the popularity of conversations are mostly based on statistical ap-

proaches [131, 132, 133]. Wang et al. [134] proposed a theoretical model to capture the temporal

evolution of conversation trees by employing a Levy process. They used the preferential attachment

mechanism to build conversation trees. Aragon et al. [135] used reciprocity (i.e., strong exchange

of messages between users) as a behavioral feature to predict the temporal evolution of a conver-

sation with respect to the depth of a tree. The proposed statistical approach utilizes the mutual

dependency between the authorship and conversation structure. Several works [136, 128] model

the dynamics of conversation trees using a Hawkes process. Medvedev et al. [136] estimated the

parameters from the initial comments of a conversation to predict the remainder. Krohn et al. [128]

improved the previous solution in the proposed CTPM model as the parameters are estimated from

the post information. More recently, Bollenbacher et al. [106] proposed the Tree Growth Model

(TGM) to predict the final size and shape of conversations given the partial conversation tree in-

formation. However, the predictive performance of these statistical approaches deteriorate due to

the dependence on the chosen parameters and optimization of the likelihood function.

While significant work has focused on predicting individual cascades, less attention has been

invested in predicting the popularity of a group of cascades. For example, several works predict the

aggregate volume of user activities on Twitter via Hawkes processes that model the events around

a group of cascades [137, 138]. Krishnan et al. [139] extracted several structural features from a set

of cascade trees (i.e., a forest of cascades) to distinguish viral cascades from broadcasts. Theoretical

models that capture the spread of social-influence when a group of competitive cascades evolve over

a network have also been proposed [140, 141]. Other works have made similar observations when

exploring inter-related cascades in multiplex networks [142]. These studies stress the importance of
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focusing on a group of cascades instead of an individual cascade for improving the prediction results

of user-level diffusion behavior.

Another line of work develops deep learning models to predict the future actions of social

media users. DeepDiffuse [127] is an LSTM architecture to predict the next user who participates

in a cascade. Islam et al. [143] used a recurrent neural network architecture to predict a user’s next

action augmented by her neighbors’ recent actions on Flickr, Flixster, Gowalla, and Digg social

platforms. TopoLSTM [144] uses the network structure to predict next activated user in a cascade.

RBMHDRN [145] was proposed to predict whether a particular user would retweet a given piece of

content on Weibo. They extracted a various set of content, user, and network related features to

solve this classification task. Myer et al. [146] found that the future action of a user in a cascade

is dependent on her previous exposures to multiple other cascades on Twitter. In a similar setting,

Weng et al. [147] developed an agent-based model to predict the probability of a user performing

a retweet when exposed to multiple memes on Twitter. They discovered an adversely negative

and positive effect on simultaneous cascades that are of unrelated and related content, respectively.

These solutions are limited to users who have already been seen in the past cascades.

On the other hand, few studies predict the popularity of topics [148, 149], hashtags [150],

or keywords [151] shared on Twitter messages. Liu et al. [148] explore machine learning methods

to predict whether and when a topic will become prevalent. The authors highlight the challenges

faced on forecasting the frequency of topics discussed by users due to irregular patterns. Yin et

al. [149] demonstrate that topics prevalent on Twitter can be categorized into temporal topics (e.g.,

breaking events) and stable topics (e.g., user interests). They utilize both the network structure and

temporal information to predict the popularity of temporal and stable topics. Saleiro et al. [151]
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classify the popularity of named entity mentions (e.g., "Ronaldo") on Twitter as high or low in

the following hours using the features extracted from news articles. They found news articles carry

different predictive power based on the nature of the entities under study. Dutta et al. [152] predict

the volume of Reddit discussions in a future time horizon leveraging the text from news and an

initial set of comments using a recurrent neural network architecture. Shrestha et al. [153] used a

deep learning model to forecast the number of retweets and mentions of a specific news source on

Twitter using the network structure observed in the day before the predictions. They found that

small, but dense network structures are helpful in the predictions.

In summary, many previous studies predicted the growth of cascades in various macro-level

properties (e.g., size, virality). They experimented with a variety of features that represent the

user, content and temporal attributes. However, many studies assumed to have the initial growth

of the cascades as input for this prediction task. This is an impractical assumption to make when

simulating social media activity. On the other hand, several studies predicted the popularity of

content (e.g., topics, hashtags) spread on social media platforms. While some studies only classified

the level of popularity, others assumed to know the ground truth information on the day before

predictions. In a simulation task that attempts to predict the social media activity in a future time

horizon, we might not have the ground truth information on the previous day of the predictions.

4.1.3 Recommendation Systems

The goal of a recommendation system is to predict the probability of a user to interact with

an item [154]. Da’u et al. [155] provide the most recent systematic review on the recommendation

system literature. Popular techniques are collaborative filtering (CF) [156, 157, 158], content-based

(CB) [159], and deep learning models [160].
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CF techniques leverage the user-user and item-item relationships to make recommendation.

These techniques suffer from cold start and sparsity issues due to inadequate information present in

the both user and item space. For example, when there are new users or new items, CF techniques

fail to make any predictions. On the other hand, CB methods are capable of predicting the user

who would interact with a new item. In contrast to CF, CB methods use the content description

of the item which allows them to make predictions for items that are not seen in the training

data. However, CB methods only use the past actions of a user to predict the future, but ignore

any related user information. Due to this reason, CB methods are only capable of predicting

recommendations for users who are already seen in the training data. While there are many deep

learning models such as Autoencoders (AEs), Restricted-Boltzmann-Machines (RBMs), Deep Belief

Networks (DBNs), Deep-Boltzmann-Machines (DBMs), Generative Adversarial Network (GAN)

proposed in the recommendation systems literature [155], many such methods are evaluated on

movie and e-commerce domains, but rarely on social network data.

More recently, Kumar et al. [161] proposed JODIE to predict the user who would interact

with a subreddit or Wikipedia page in the future. They used a recurrent neural network model to

learn dynamic embedding vectors of users based on a sequence of temporal interactions. GraphRec

is another model that used graph neural networks (GNN) to learn the embedding vectors for users

present in the user-item graph and the user-user social graph. They represent the edges in the user-

item graph with the users’ opinions on items (e.g., a user likes item x, and dislikes item y). They

found that a combination of social relationship features and opinion features lead to more accurate

recommendation results. Both JODIE and GraphRec are not capable of making predictions for

users who appear only in the test data.
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There is a recent trend of applying machine learning methods to improve social media

recommendation algorithms. Most recent attempts in this line of work are due to the annual ACM

RecSys grand challenge that is organized by Twitter [162]. In the 2020 challenge [163], the problem

was to predict the probability of a user engaging with Twitter interactions such as like, reply, retweet,

and quote tweet. The winning solution used a variety of good features that represent the importance

of users and message content [164]. However this challenge problem is different from our simulation

problem for two main reasons. First, it assumes both a user and a message exist in the testing

period. This is an impractical assumption to make when simulating a social system. Simulators do

not assume to have any prior knowledge in the testing period. Second, it does not ask when such

interaction is going to happen. For example, a classifier can predict the binary interaction between

a user and a message but it assumes such interaction may happen sometime in the future without

directly specifying it. In contrast, a reliable simulator should predict the timing of such interactions

more accurately.

In summary, there are various techniques developed to improve recommendation systems

in general, but not many evaluated on social networks. The challenge here is how to develop

recommendation algorithms for users whose interests change over time [161].

4.1.4 Network Link Prediction

Predicting future links in a social network is a popular task in the social science community.

Recent survey papers on link prediction [165] and social influence prediction [166] review a decade of

research in this field. There are two types of link prediction tasks. They include predicting missing

links in a static graph, and ranking most probable links in a future snapshot of a dynamic graph.

Traditional models use hand-crafted features to achieve good performance. Distance-based features

78



(e.g., shortest path), and neighborhood features (e.g., the number of common neighbors, Jaccard’s

coefficient, Adamic-Adar index, Katz index) are the most effective features in the link prediction

tasks [165].

Most recent network link prediction methods use Graph Neural Networks (GNN) [167]. The

major benefit of GNN methods is the ability to make predictions for nodes unseen in training. GNNs

achieve this capability via representing nodes with the features extracted from the local network

neighborhood structure. This feature extraction process is done automatically by learning a function

to aggregate the local network’s neighborhoods information. Once learnt, this function is able to

distinguish different node’s local neighborhood structures. Many GNN methods (e.g., GCN [168],

GAT [169], GraphSAGE [170]) are proposed in the literature. The key distinctions among many

GNN methods are in how different approaches aggregate local network neighborhoods information.

Despite the recent success of GNN methods in the network link prediction literature, they

have limitations. Theoretically it is proven that GNN methods are not significantly more powerful

than Weisfeiler-Lehman (WL) graph kernels [171]. WL kernel is a simple iterative neighborhood

aggregation method that was widely used to solve the graph isomorphism problem [172]. Another

concern is due to the benchmark graph datasets that are typically used to evaluate GNN methods.

For example, a recent study [173] showed that combining label propagation and feature augmen-

tation techniques can beat the GNN performance on homophilous graph datasets that are widely

used in the GNN literature.

In summary, there has been a significant advancement made in the network link prediction

research both in terms of the features and the techniques (e.g., GNN). However, many traditional

predictive models are built only for the nodes who are already seen in the training data (transductive
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capability), but not for the new nodes who only appeared in the testing data (inductive capability).

While recent deep learning methods overcome this issue to some extent [170], more experiments are

required to test the robustness and generalizability of these methods over different types of social

networks.

4.1.5 Simulating Finer Grained Social Media Activity

The studies related to predicting finer grained social media activity are lacking. Most recent

attempts in this space are part of the Computational Simulation of Online Social Behavior (So-

cialSim) program sponsored by the Defense Advanced Research Projects Agency [174]. Abdelzaher

et al. [107] proposed SocialCube, an agent-based approach to predict social media activities. This

solution decides optimal agent-specific configurations from past social media traces. Garibay et

al. [175] proposed DeepAgent to simulate the social media activity in the population, community,

user, and content levels. This framework used a generative rule-driven approach where specific rule

sets were built to model agent behavior using both endogenous and exogenous signals. While we

have similar objectives, our solutions are not composed using specific individual agents’ actions or

hand-crafted rule sets.

4.2 Simulation Scenarios

The main goal of having a reliable social media simulator is to foresee the activities of a

social media platform more accurately than what can be predicted by chance [176], or what can be

judged by a human operator [177].

This dissertation focuses on two scenarios that motivate the design of the social simulators

that we developed. We classify these scenarios by the endogenous and exogenous input features that
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Table 4.1: The overview of the simulation scenarios.

Input Features Output Granularity Evaluated Context Platform

Endogenous Who says to Whom When

Organic discussions on
cyber-security and
crypto-currency

community

Reddit

Endogenous
and

Exogenous
Who says What to Whom When Political crisis in

Venezuela Twitter

we used to train a simulator (as shown in Table 4.1). We discuss the design and implementation of

these simulators in the subsequent chapters.
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Chapter 5: Simulating Online Discussion Threads Using Endogenous Signals3

Discussions on social media have significant impact on society. From recruitment to politi-

cal movements to disinformation campaigns, social media discussions are the driving mechanism for

information diffusion and user engagement. A particular variation of online discussions is a conver-

sation tree, as seen on Reddit, StackOverflow, or Digg. In Reddit, for example, conversations are

grouped on user-defined topics (often known as subreddits). The root of the conversation tree is an

original post by a registered user; users respond with comments to the original post or other users’

comments, repeatedly getting involved in the same conversation. Messages are often repeatedly

exchanged between two users in a long conversation chain [135]. Discussions may lead to provoca-

tive, offensive, or menacing comments that end up involving an increased number of reactions and

users [132].

Forecasting how conversations will evolve on such platforms is useful to many applications.

For example, while it is difficult to know how many users follow a conversation over time without

contributing to it, the number of users who contribute can help estimate the number of users

exposed to the conversation. This information can be used to trigger the intervention of a subreddit

administrator, for example, if the original posts are predicted to create unwanted engagement such as

a coordinated disinformation campaign that is not likely to pass unnoticed. Accurately predicting

the group of highly engaged users is important for developing intervention techniques to control

information or manipulation spread and to accurately gauge the community opinion.
3A part of this chapter was previously published in [178]. Permission is included in Appendix A.
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One challenge of addressing this problem is that real environments consist of simultaneous

conversations on related topics [146]. For example, a user can engage multiple times in the same

discussion thread; the same user can participate in multiple related conversation threads, thus

affecting the overall audience size; simultaneous related conversation threads might compete for the

attention of the same users, thus impeding or accelerating their involvement. Thus, one needs to

take the groups of simultaneous conversations into account when developing a reliable simulator.

Much of the previous work has focused on predicting isolated properties of individual social

media conversations such as size [179], temporal growth [126], and virality [115]. However, these

efforts assume to know the initial growth of a conversation to predict the property of interest in the

remainder of the conversation. The initial growth of a conversation in the first few hours has been

shown to be most useful in predicting the future growth of the conversation [114].

This chapter proposes a method for forecasting the ensuing conversations with timing and

authorship properties when given a set of topic-related original posts in a continuous interval of

time on a platform. The contributions of this chapter are the following:

• We predict the properties of conversations in a finer granularity that include whether, when,

and by whom a comment will be made in response to a post or another comment. This contri-

bution is evaluated in terms of conversation structure (size and virality) and user engagement

over time.

• We focus on predicting groups of conversations instead of individual conversations. We show

that this focus is beneficial in accurately predicting the collective behavior of users who par-

ticipate in multiple conversations.
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• In contrast to most related work, our method only assumes to know the original post (or

root of individual conversations), without initial reaction information. Previous studies used

the comments that a post receives in the first few hours to predict the remainder of the

conversation.

This chapter is organized as follows. Section 5.1 presents our solution in detail. We describe

the dataset that we use to evaluate our solution in Section 5.2. Performance results are presented

in Section 5.3. Section 5.4 summarizes the contributions presented in this chapter.

5.1 Predicting Pools of Conversations

Our objective is to predict the microscopic properties of a set of possibly inter-related,

simultaneous conversations over time. The operational scenario we are considering is the following:

given the initial postings described by content, author, and time on a given social platform (such

as the four messages depicted on the horizontal time axis in Figure 5.1), generate the emerging

discussion threads by specifying which message is in response to which message, and the author

and time of each message. Each discussion thread generated will be represented as a conversation

tree, where a child node is a message in response to its parent node in the tree; users can engage

repeatedly within a conversation; the delay in responding to a previous message is unbounded; and

a user may respond to his own message, typically with additions or clarifications. Table 5.1 presents

the terminology used in this chapter.

Our solution is as follows. We probabilistically generate pools of independent conversation

trees rooted in each input seed. We assign users and timing information to all nodes in every con-

versation tree. We thus end up with naive groupings of independent conversations, where user and
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Figure 5.1: Sample simulation scenario. Given four original posts, the objective is to generate the
corresponding conversation trees given that previously unseen users can engage in conversations;
messages may be posted with unbounded delay; some original posts will remain unanswered; the
conversation trees will have highly different structures; users may engage repeatedly with the same
or different conversations.

Table 5.1: Terminology used in this chapter.

Term Description
Node Message in a discussion thread described by content, author,

and posting time
Conversation tree A conversation thread represented as a tree of messages,

as shown in Figure 5.2a
Conversation pool A collection of conversation trees within a finite period
Conversation size The number of messages in a conversation
Conversation pool size The total number of messages in all the conversations in a pool
Conversation depth The number of levels in a conversation tree
Conversation breadth The number of messages in a given level of a conversation tree
Node degree The number of immediate messages in response to the

parent message
Seed A message at the root of the conversation tree
Propagation delay The time difference between the posting of a message

and that of its parent
Structural virality Wiener Index of a conversation tree [180]
Collectivity Group behavior of users engaged in multiple conversations

[181]
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time assignment to messages in a conversation are oblivious to what happens in other conversations

in the same pool (Section 5.1.1). We then use a genetic algorithm to reconstruct a realistic pool of

conversations from the arbitrarily generated ones (Section 5.1.2).

5.1.1 Generating Pools of Conversations

We employ the branching model [182] to construct pools of conversations. We are building

on research [26] that shows that branching models based on node degree distributions can be used

to accurately generate sub-trees of conversations. In this work, we extend this technique to generate

temporal conversation structures of any depth while attaching user information.

We build each conversation tree recursively, as presented in Algorithm 1. The steps of this

algorithm are as follows. From the training dataset that contains a large number of conversation

trees, we build degree distributions per level. Thus, for each level, we will have a degree distribution

for the nodes located at that level across all conversation trees. The node degree is defined as the

number of children of that node in the conversation tree. Given an initial seed that functions as the

root of the conversation tree to be generated, we recursively build tree structures by selecting node

degrees from the degree distribution of the corresponding level. For a set of n input seeds, we thus

generate n independent conversation trees that we consider a pool.

In order to assign authors to nodes in a conversation tree, we exploit the social network

topology of previous user interactions. Specifically, from the training dataset, we extract the inter-

action network in which vertices are users and directed edges represent previous interactions. We

also extract edge weights that represent the number of previous interactions. Note that a user can

be part of her own neighborhood if she replied to her own post in the past. This is reflected by a
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Algorithm 1 Probabilistic Generation of a Conversation Pool

prerequisites: degree distributions per level of a conversation
input: parent node
output: a conversation tree

1: function generate_conversation(parent, conversation)
2: if parent is NULL then
3: root_level← 0
4: root_degree← sample_degree(root_level)
5: parent← Node(root_level, root_degree)
6: conversation.set_root(parent)
7: level← parent.get_level()
8: Nchildren ← parent.get_degree()
9: for j ← 1 to Nchildren do

10: child_level← level + 1
11: child_degree← sample_degree(level)
12: child← Node(child_level, child_degree, parent)
13: conversation.set_child(child)
14: return generate_conversation(child, conversation)

input: seeds1 . . . seedsN
output: a pool of conversations

function generate_conversation_pool(seeds[])
2: seed_size← length(seeds)

conversation_pool← []
4: for k ← 1 to seed_size do

conversation← Tree()
6: conversation.set_root(seedsk)

generate_conversation(seedsk, conversation)
8: conversation_pool[k]← conversation

return conversation_pool

weighted self-loop in the network. We use this directed, weighted interaction network to bias the

assignment of users to messages as follows. We start with a conversation tree, as generated above,

whose root has a user assigned (from the input data). Recursively, for every node with a user u

assigned, we probabilistically select d users from u’s neighbors N(u) in the interaction network and

assign them as authors to the node’s d children. If d > N(u), we add (d − N(u)) new users who
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were previously not seen in the training data to the chain of responses. We bias the probabilistic

selection using the weights in the interaction network. Note that this approach allows for the same

user to participate multiple times in the conversation tree.

In order to assign time to nodes in the conversation tree, we use a propagation delay dis-

tribution conditioned by the size of the conversation. We consider the propagation delay as the

difference between the time of each comment and the time of parent comment/post in the training

dataset. For each conversation, we extract the size of the conversation and the sequence of prop-

agation delays. In the generated conversation, we use the size of the conversation resulting from

the generation process (Algorithm 1) to randomly select a sequence of propagation delays from a

previously seen conversation of that size. We sort the nodes of the generated conversation by level,

assign the propagation delay to nodes, and compute the message time using the time of the seed

message and the assigned propagation delay.

After this procedure, we end up with conversation trees rooted in the original message from

the input data, in which each message node has a user and a time assigned. This simple probabilistic

approach generates pools of independent conversations that ignore multiple aspects of real-world

behavior, such as users participating in multiple conversations within the same period of time or,

alternatively, being unable to participate simultaneously in many conversations. During empirical

evaluations based on a variety of performance metrics that will be described later, we observed that

all pools perform comparably and poorly when compared with testing data.
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5.1.2 Reconstructing a Realistic Pool of Conversations

Ideally, given a set of possible pools of n conversations each corresponding to the n input

seeds, we would construct a new pool consisting of the “best” conversation for each seed. However,

there are two challenges. First, it is impossible to know which conversation is the best before the

testing of the entire pool. This is mainly due to the huge variety of possible conversations that can

be generated randomly.

Second, using a single performance metric that evaluates the "goodness" of individual con-

versations, selecting a pool of the best such individual conversations does not lead to a pool good

enough in other metrics. For example, a pool constructed from the best individual conversations

according to structural property metrics might evaluate poorly in user-level metrics.

To address these challenges, we treated the pool reconstruction problem as an optimization

problem that we solved using a genetic algorithm. As the fitness function in the genetic algorithm, we

used the output of two trained machine learning models to evaluate the goodness of a conversation.

5.1.2.1 Modeling the Problem using a Genetic Algorithm

Genetic algorithms provide powerful search heuristics for complex search spaces [183]. To

proceed with the standard steps of genetic algorithms, we map our problem into the genetic algo-

rithm context as follows: We consider a gene an individual conversation, represented by the message

tree with assigned user and timing information attached to nodes. An individual in the genetic al-

gorithmic representation is thus a pool of conversations in our context. The population is the set of

conversation pools we generated with the probabilistic approaches described earlier. The objective

is to create a pool of conversations that outperforms any existing pool of conversations.
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We use the standard framework of a genetic algorithm and repeat the process until there

is no improvement in the best solution. We start with the initial set of n conversation pools as

described earlier. We measure the fitness of a conversation pool using two trained machine-learning

models as described next. We rank the conversation pools according to the fitness function and

consider only the top 80% for mate selection. Given a pair of conversation pools selected from a top-

ranked pool and a least-ranked pool in this top 80% pools, we randomly draw conversations (without

replacement) to form a new pool for the next generation. Thus, the new generation entirely consists

of conversations from the top 80% of the conversation pools in the previous generation. Accordingly,

we re-construct n new pools for each generation. We summarize all algorithmic steps in Algorithm 2.

We do not use mutations in this approach for the following reason. Mutations require

modifying the initial conversation structures (with user and timing information) generated by the

probabilistic model. The mapping of users to the internal conversation nodes is done via a recursive

chain of user assignments using the interaction network. When we modify the structure, this method

of mapping users becomes obsolete and leads to an inaccurate view of user responses.

5.1.2.2 Ranking Pools of Conversations with Machine Learning

In order to rank the pools of conversations, we assign a goodness score to each conversation

in the pool and consider the sum of all such scores as the goodness score of the pool. The goodness

score of each conversation has two components: a score relative to the structural properties (i.e., the

shape of the conversation tree), and a score relative to the timing of the nodes in the conversation.

Specifically, we feed each conversation into two trained machine-learning models to assess the good-

ness of the branching factor and propagation delay with respect to the attached user information

and semantic structure.
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Algorithm 2 Selection of the Best Conversation Pool with a Genetic Algorithm

input: a set of conversation pools, γ the probability of mate selection
output: a set of re-constructed conversation pools

1: function nextGeneration(P,γ)
2: P ← rank_pools(P )
3: Pmates ← select_best_pools(P, γ)
4: Pgen ← reconstruct_pools(Pmates)
5: return Pgen

input: initial set of conversation pools
output: best conversation pool

function generate(P,γ, NGens)
2: for N1 ← 1 to NGens do

P ← nextGeneration(P, γ)

4: P ← rank_pools(P )
pool← select_best_pool(P )

6: return pool

(a) Conversation Tree (b) Individual Conversation (c) A Pool of Conversations

Figure 5.2: Representation of conversation trees. a) Nodes (messages) are ordered chronologically.
Yellow nodes represent internal nodes and blue nodes are leaf nodes. b) Each node is represented
by a spatio-temporal feature vector. Feature vectors are ordered chronologically and grouped by
conversation. c) Multiple conversations of arbitrary size are stacked together for training/testing.

We use two individual-level properties—branching factor and propagation delay—of con-

versation nodes as the target units for the prediction tasks. Any information regarding branches

is important for the accurate creation of the conversation structure as they evolve in the form of

sub-trees under the same original post or another comment [132]. Therefore, we first classify the

messages as leaf or branch nodes in the tree. Note that these node positions determine the shape

of the conversation.
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We classify the messages by the delay with which they are posted in response to their

parents to distinguish fast-paced conversations from slow-paced conversations. We consider the

median propagation delay within a conversation as the borderline between the two classes: messages

with a propagation delay larger than this median are called late adopters, while the others are

early adopters. We used this binary classification approach to seek the hourly time granularity

predictions. We discovered empirically that the median propagation delay is close to 1.5 hours and

a binary classification satisfies the hourly granularity. For finer time granularity, we might need to

classify propagation delays by quartiles, or predicting the exact propagation delay value in seconds.

This would remain as future work to improve the time predictions.

Each message is described by features from three main categories: i) spatio-temporal fea-

tures, that capture the position of an individual message in a conversation, ii) user features, and

iii) content features. These features are detailed in Table 5.4. We use the LSTM model to cap-

ture the chronological order of messages in a conversation. The input to the LSTM algorithm

is a conversation as shown in Figure 5.2b. We use the memory-cell design of a standard LSTM

in our work [184] which is implemented in Keras [185]. Our LSTM setup includes two blocks of

memory-cells with 32 and 8 hidden units, and we use the Adam algorithm for the optimization with

a learning rate of 0.001 based on hyper-parameter optimization. Conversation representations are

different in shape mainly by the number of messages in the online conversation, and thus we input

them one by one for training.

During testing, we extract the features described in Table 5.4 from the generated conversa-

tions. The activity-level features of the users in a particular conversation are constructed considering

their activities in other conversations. To account for the interaction among multiple conversation
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trees, we dynamically update the user features. Specifically, when a user j is assigned to a message

in a new conversation tree at time t, her activity features such as the number of past activities At′j

at time t′ < t is updated to Atj = At
′
j + 1. Since we do not predict the content of the messages in a

conversation, we assign content-level features to messages in the testing period randomly based on

previously seen conversation nodes in the same level.

Once we construct the data structure shown in Figure 5.2b with all necessary features, we

infer one binary vector that represents branch/leaf using the branch discriminator model, and an-

other binary vector that represents the early/late adopters using the delay discriminator model. We

consider these two binary vectors as the inferred ground truth to assess the generated conversation.

The assessment is done by comparing the inferred ground truth with the same binary vectors ex-

tracted from the generated conversations using the area under the curve (AUC). Each conversation

receives a goodness score as the mean of two AUC scores from the two models. The goodness of

a pool of conversations is the sum of the goodness scores of the conversations in the pool. We use

this pool goodness score to rank the pools of conversations in the genetic algorithm (as shown in

RANK_POOL function in Algorithm 2).

5.2 Datasets

For empirical evaluations, we focus on Reddit conversations. We selected two active topics,

crypto-currency, and cyber-security, as our two topic-driven separate datasets. We extracted all

conversations between January 2015 and August 2017 posted under the topic-related subreddits

and listed in Table 5.2. Both datasets were provided privately as part of the DARPA SocialSim

program.
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Table 5.2: Subreddits used for data collection. We collected 0.2M conversations from 9 subreddits
related to crypto-currency and 1.76M conversations from 38 subreddits related to cyber-security.

Domain List of Subreddits

Crypto-currency /r/Bitcoin, /r/Ethereum, /r/Monero, /r/Paycon, /r/DopeCoin,
/r/Lisk, /r/Donationcoin, /r/Pivx, /r/Orocoin

Cyber-security

/r/netsec, /r/netseclounge, /r/technology, /r/techsupport,
/r/pcmasterrace, /r/linux, /r/hacking, /r/Piracy,

/r/sysadmin, /r/HowToHack, /r/privacy, /r/Windows10,
/r/programming, /r/networking, /r/softwaregore,

/r/compsci,/r/talesfromtechsupport, /r/msp, /r/security,
/r/SocialEngineering, /r/Malware, /r/AskNetsec,

/r/blackhat, /r/ReverseEngineering, /r/crypto, /r/pwned,
/r/netsecstudents, /r/securityCTF, /r/hacktivism,
/r/browsers,/r/linuxadmin, /r/websec, /r/antivirus,
/r/Ransomware, /r/Pentesting, /r/OpenHacker,

/r/blackhatting, /r/Android

We represented each conversation thread as a conversation tree. A node in the conversation

tree consists of the textual content of a Reddit message (post or comment) and its author. A pair of

nodes (source to target) are connected by a directed edge where the direction suggests that the target

node reacts to (content posted by) the source node. Table 5.3 presents the structural properties of

the conversations in the two datasets. The cyber-security dataset is nearly 10 times the size of the

crypto-currency dataset in the total number of messages posted. The properties of the conversation

trees are also highly different in scale: the largest conversation in cyber-security contains 74K

messages, while in crypto-currency is 7.8K. The depths of the conversation trees are different: 971

vs. 160. Irrespective of the size and depth disparities, we observe that Reddit conversations are viral

and broad. They include both slow (cyber-security) and fast-paced (crypto-currency) conversations

which can be active for short and long periods. (as seen in Figure 5.3). Moreover, the discussions

that originate from crypto-currency subreddits exhibit diverse characteristics related to the scale

and speed of discussion spread [186].
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Table 5.3: Properties of Reddit conversations in our datasets.

Measurement Crypto Cyber
Number of conversations 209,721 1,762,977
Number of messages 3,580,162 35,381,971
Number of distinct users 144,457 1,647,789
Max conversation lifetime (days) 311 910
Max conversation size 7,868 74,032
Max conversation depth 160 971
Max conversation breadth by level 7,578 72,955
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Figure 5.3: Basic characteristics of Reddit conversations. The distribution of cascades is presented
by (a,d) size, (b,e) depth, (c,f) the mean delay between the time of a comment and the time of the
original post as observed in the conversations.

Figure 5.4 depicts a sample group of conversations on Reddit related to the Bitcoin scaling

debate [187] from August 2017. The debate eventually led to the creation of a new crypto-currency,

Bitcoin Cash (BCH), along with a new software repository on GitHub that implemented the scale-

up solution. There are users who repeatedly participate in the same and multiple conversations

during the debate. For example, there are 57 conversations with 4,418 messages posted by 1,458

users. 218 and 83 users appeared in more than one, and two conversations, respectively.
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Introducing Bitcoin Cash(BCH) that splits Bitcoin’s 
(BTC) original blockchain via a hard fork — a 

consequence of popular Bitcoin scaling debate 

“We need off-chain 
scaling and on-chain 

scaling.Our stupid 
politics is hurting 
Bitcoin because 

we're separating the 
two necessary parts 

of the overall 
solution.”

Discussion on the 
advantages of Bitcoin 

Cash (BCH) on 
scalability — “Bitcoin 

Cash (BCH) totally fixes 
the quadratic scaling of 
sighash operations bug”

..“I miss those 
days man and 

got tired of 
these scaling 

topics.”..

“Don't fall for the big 
block argument while we 
are so close to have the 

scaling solution.”

“..but he made 
a mistake in 
the scaling 

debate”

Figure 5.4: Discussions on Reddit during the Bitcoin scaling debate.

From these datasets we extract three groups of features (detailed in Table 5.4): i) spatio-

temporal features, ii) user-level features, and iii) content-level features. We represent the topology

around an individual node in the conversation using two spatio-temporal properties: degree and the

birth order of the predecessors. As an example, we use the degree and birth order of the parent

(level i− 1) and the grand-parent (level i− 2) nodes to represent a node in level i.

Actions in a conversation could be in response to the users who authored the previous

message rather than simply to the content with which the users interact. We thus represent a user

via a set of features describing her status on the platform, measured by the amount of activity she has

done before the particular reaction. Such activities reflect the user’s interest in other conversation

threads. We also extract the popularity of the user in terms of upvotes and downvotes received

to her posts or comments in the past. These endorsements summarize the influence of a user in a

community.

96



Table 5.4: Features used to represent a message in a Reddit conversation.

Feature Domain Feature Description

Structural Features

Number of comments for comment/post
Adoption delay from the parent comment/post
Adoption delay from the root post/root
Level of the conversation tree
Birth order of comment
Number of comments for the parent comment/post
Birth order of the parent comment
Number of comments to the grandparent comment/post
Birth order of the grandparent comment

User Features
Total number comments received by the comment author in the past
Total netscore (upvotes−downvotes) of the comment author in the past
Total number comments made by comment author in the past

Content Features

Netscore of the comment
Subjectivity score of the comment
Controversiality score of the comment
Netscore of the parent comment
Subjectivity score of the parent comment/ post
Controversiality score of the parent comment
Netscore of the grand parent comment
Subjectivity score of the grand parent comment/ post
Controversiality score of the grand parent comment

We extracted the sentiment scores of Reddit comments that quantify the subjective and

controversial content (a Python library of a natural language toolkit is used to calculate these two

features [188]). We also captured the semantic structure of the comments at predecessor nodes.

Another useful feature is the popularity of posts or comments that is captured by net-score, the

difference between up-votes and down-votes received for a particular post or comment from all users.

5.3 Evaluation

The primary objective of the generative model proposed in this study is to predict the com-

plete conversation structure with authors and timing information. For a comprehensive evaluation,

we compare the following outcomes against the ground truth conversations: (i) the structural char-

97



Table 5.5: Reddit conversations grouped by post time.

Domain Training (Jan ’15–Jul ’17) Testing (Aug ’17)
# Conversations # Messages # Conversations # Messages

Crypto 0.19M 3.3M 0.02M 0.25M
Cyber 1.7M 34M 0.06M 0.9M

acteristics in terms of size and virality of the predicted conversations; (ii) the volume as measured in

the number of comments generated to the seed posts and audience size as measured in the number

of distinct users who participate in the conversations over time, and (iii) the collective behavior of

users who engage in multiple conversations.

For testing the generated pools of conversations, we used a subset of the testing data as

follows. We used as seeds the posts made between August 1 and August 3, 2017, and the resulting

conversations as seen by the end of August 2017. There were 3,740 and, respectively, 3,463 such

conversations in the crypto-currency and cyber-security domains. Because seeds are chosen from a

continuous time interval, the ensuing conversations can overlap in time.

We compare the quality of our model with respect to three baseline models. First, we

use a state-of-the-art generative model (i.e., Lumbreras Model [131, 189]) that predicts the entire

structure of the conversation instead of aggregate metrics such as size or virality. The Lumbreras

model proposed an improved solution compared with a family of generative approaches [190, 191]

that use the branching process in the generation of conversation structures. A more recent work [135]

that adds reciprocity as a model parameter acknowledges increased computational costs relative to

previous work due to various optimization functions. Due to the size of our datasets, we chose to

compare with the less computationally intensive Lumbreras model. This model uses parameters

related to popularity, novelty (preference to reply to a newer post), root-bias (preference to reply

to a post rather than to a reply itself), and user roles to predict the growth of discussions. We
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construct 10 pools of conversations from this solution to account for the bias in parameter selection

criteria. However, this model does not assign user information and maps only discrete timestamps

to the generated comments. We do not use the Lumbreras model in the temporal measurements

due to the mismatch between our continuous time and its discrete time approaches.

Next, we use two baseline models that draw the events from the training data repeatedly into

the testing time period. Baseline (recent-replay) draws the most recent n conversations from the

training data. Baseline (random) draws n conversations from the training data at random (where

n is the number of seeds in the testing period). We construct 10 pools of conversations in the

Baseline (random) solution to minimize the bias of random selection. In the baseline solutions, we

keep all other event information (e.g., author, the conversation structure, etc.) of the conversations

except the event timestamps, which are shifted by the time interval between the seed post and their

corresponding root message. Because these baseline models repeat events from the recent past,

they proved to be very challenging to outperform in simulating user activities in multiple social

platforms [107, 106], including Reddit [128].

To evaluate the accuracy of our conversation reconstruction solution, we use several measure-

ments. First, we evaluate the goodness of our fitness score used in the conversation reconstruction

algorithm (Section 5.3.1). Second, we present the structure of conversations in the reconstructed

pool with respect to size and virality (Section 5.3.2). Third, we evaluate the volume of messages

generated from the original posts with respect to the community of users who authored them and

timing information (Section 5.3.3). Finally, we quantify the engagement of users in multiple con-

versations (Section 5.3.4). These metrics are reported in comparison with ground-truth data and

the baseline models mentioned above.
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5.3.1 The Goodness Score of a Conversation

We measure the two components of the goodness score: predicting the position of a message

as a branch or leaf node in the conversation tree, and the timing of the message as early or late

compared to the median propagation delay relative to that conversation. We train four LSTM mod-

els in total for two training datasets as described in Table 5.5. The outputs of these LSTM models

are used to assess the likelihood of a conversation in the conversation reconstruction algorithm.

LSTM-degree models achieve a 73-75% F1 score in discriminating leaves vs. branching nodes in

respective domains. A majority vote would achieve 65% accuracy on predicting branches as the two

classes are balanced in the ratio of 65%:35% across both datasets. The F1 score of our LSTM-delay

models in distinguishing between early and late adopters is 83-89% while a random draw should

achieve 50% given the perfectly balanced classes.

5.3.2 The Structure of Conversations in the Pool

To measure the size and structural virality of the generated conversations irrespective of

the temporal aspects, we compare the re-constructed conversation pool with the baseline generative

approaches. We show the Cumulative Distribution Functions (CDF) of individual conversation sizes

and structural virality scores for conversations resulting from our model, the baseline approaches,

and the ground truth in Figure 5.5. For fairness in evaluating the baseline approach, for the

Lumbreras model and Baseline (random) we generated 10 solutions for each seed and reported the

average. We calculate the absolute percentage error (APE) of the mean size and the mean structural

virality between the generated conversations and the ground truth conversations. We also report

the JS divergence between the distributions of the structural metrics reported from the generative
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Figure 5.5: The distribution of the size and virality of conversations.

models and the ground truth (as shown in Table 5.6). A lower JS divergence value denotes that the

distribution of the sizes/structural virality of the generated conversations is closer to that of the

ground truth. We have three observations from these measurements.

First, our solution achieves the lowest JS divergence value after comparing the distributions

of sizes and virality scores between the predicted and the ground truth conversations (as shown in

Table 5.6). We also record the mean conversation size closer to the ground truth value across both

datasets as shown by the lowest APE values for sizes in Table 5.6.

Second, we noticed that the mean structural virality scores of the conversations generated

by our solution are closer to the ground truth in crypto-currency related discussions (lowest APE
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Table 5.6: Performance of the size and structural virality of the conversations. We compare the
distribution of size and virality of the generated conversations with the ground truth using JS Diver-
gence (JSD). We also report the APE for the mean size and structural virality of the conversations
after compared with the respective values in the ground truth. We highlight the lowest JSD and
APE values in bold.

Domain Model Size Virality
JSD APE JSD APE

Crypto

Baseline (recent-replay) 0.40 51.7 0.043 17.6
Baseline (random) 0.14 43.5 0.074 23.7
Lumbreras Model 0.49 37.4 0.046 11.8

Genetic-LSTM (our solution) 0.15 25.4 0.012 7.5

Cyber

Baseline (recent-replay) 0.39 28.9 0.035 14
Baseline (random) 0.41 57.6 0.036 62.7
Lumbreras Model 0.34 12 0.062 0.3

Genetic-LSTM (our solution) 0.23 8.6 0.029 15.7

values for virality in Table 5.6) more than the cyber-security related conversations. We believe

this is due to the slight over-prediction (12%-18%) of the number of smaller conversations (i.e.,

conversations with a size smaller than the median size) compared to what exists in the ground

truth. The majority of smaller conversations only have immediate comments to the original post,

thus the virality scores are very low.

And finally, we also notice the difficulty of accurately predicting the properties of the largest

and most viral conversations. Note that the most viral conversation may not be the largest con-

versation [180]. For example, the size of the most viral (virality = 12) conversation is 136, and the

virality of the largest conversation (size = 1,301) is 5 in crypto-currency discussions. We do not

accurately predict the size and virality of such conversations compared to other baseline models (as

shown in Table 5.7). However, we noticed those baseline models are not consistent in achieving the

best results across crypto and cyber discussions. These conversations are very rare to observe and

are likely to grow under external events [180, 192]. These external events may be in the form of

crypto-currency prices, cyber-security attacks, or news events as reported by journalists. Our prob-

102



Table 5.7: Performance of the largest and the most viral conversations. We highlight the lowest
APE values in bold.

Domain Model Largest Most viral
Size (APE) Virality (APE)

Crypto

Baseline (recent-replay) 62 17
Baseline (random) 10 83
Lumbreras Model 113 0

Genetic-LSTM (our solution) 69 8

Cyber

Baseline (recent-replay) 34 21
Baseline (random) 121 147
Lumbreras Model 358 53

Genetic-LSTM (our solution) 87 47

abilistic model does not account for these external events on generating the conversation structure,

thus it is unable to reproduce the properties of the most viral conversation. We plan to incorporate

external events for modeling conversations in future work.

In conclusion, while our solution more accurately traces both the distribution of conversation

sizes and that of conversation viralities than any of the baselines, it struggles with the endpoints of

the spectrum: very small and very large conversation properties. However, we can conclude that we

generate a pool of conversations that are closer to forecasted activity than simply representing the

past through random sampling because in all metrics we consistently outperform the random and

recent-replay baselines. The challenges posed by the two baseline models extracted from training

data are evident also in comparison with the performance of the Lumbreras model: only once does

the Lumbreras model outperform both baselines in terms of JS distances (Table 5.6). In terms of

APE values (as presented in Table 5.6), it competes closely with the baselines.
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5.3.3 Temporal Conversations

We compare the reconstructed pool of conversations with the ground truth data on different

temporal measurements. We compare i) the size of the conversation pool as measured in the

overall number of comments generated to the seed posts, and ii) the number of distinct users who

participate in the conversation pool over time. We report Dynamic Time Warping (dtw) and Root

Mean Square Error (rmse) on these measurements between the conversations in the reconstructed

pool and the conversations in the ground truth. We use daily granularity to bin the timeseries for

comparison, and group these timeseries into five time intervals of 1–5 days, 5–7 days, 7–14 days,

14–21 days, and 21–28 days for a deeper evaluation.

Table 5.8 shows the APE values for the number of messages and the number of distinct users

after comparing different models with the ground truth. Our simulations result in better estimations

of the total number of messages than any of the baselines, with 25.3 and 8.5 absolute percentage

error (APE) in the two datasets, which leads to 35%-50% performance gain over the best-performing

baseline. However, our solution does not achieve the lowest APE on the total number of distinct

users as we over-predict the number of users who participate in these conversations.

Table 5.8: Performance of the volume and users in the conversation pool. We do not report the
number of distinct users for the Lumbreras Model as it does not predict user assignments. We
highlight the lowest APE values in bold.

Model # Messages (APE) # Users (APE)

Crypto

Baseline (recent-replay) 52 29
Baseline (random) 50 22
Lumbreras Model 37 -

Genetic-LSTM (our solution) 25 36

Cyber

Baseline (recent-replay) 29 2
Baseline (random) 58 27
Lumbreras Model 11 -

Genetic-LSTM (our solution) 8 67
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We are interested, however, in evaluating our predictions over the simulated time. This

is particularly relevant for application scenarios such as designing intervention techniques when

one would like to investigate "what if" scenarios and their consequences at particular times. Fig-

ures 5.6, 5.7, and 5.8 report the timeseries and the performance of predicting the volume of comments

and the number of distinct users who participate in these conversations. There are multiple ob-

servations to be made from these plots. First, the trend of the number of messages and distinct

users over time holds for our simulations and the baselines. This is because all models capture the

intuitive phenomenon of high activity and user involvement when a post is freshly made, and the

decay in interest as time passes.
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(d) Number of unique users over time

Figure 5.6: The conversation pool over time. We report the size of the conversation pool and
the number of unique users participating in conversations over time for crypto-currency and cyber-
security discussions. Genetic-LSTM (our solution) is compared with two competing baseline models,
Baseline (recent-replay) and Baseline (random). Baseline (random) predictions are normalized over
10 different runs, and the error bars are reported for the standard deviation.
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Second, our solution fares better than the baselines not only in the aggregate number of

messages at the end of the simulation period but also over time: the green lines in Figures 5.6a

and 5.6b are generally the closest to the ground truth plots in yellow. As shown in Figure 5.7c, our

solution records a rmse value of 1,685 compared to the rmse values of 3,697 and 3,329 for the two

baseline models on predicting the conversation pool size during the first five days (1D-5D). During

the next time intervals, our solution records 2%-39% performance benefit in rmse values over both

datasets compared to the best-performed baseline solution (as shown in Figures 5.7c and 5.7d).
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Figure 5.7: The size of conversation pool over time. We report the performance of predicting the
size of the conversation pool over time for crypto-currency and cyber-security discussions using two
quantitative metrics, (a,b) Dynamic Time Warping (DTW) (lower is better), (c,d) RMSE values
(lower is better) after comparing each model predictions with the ground truth over different time
intervals. Checkpoint windows are in days (D).

Third, our performance advantage over the baselines is higher in the cyber-security conversa-

tions, where our solution is always better than both baselines in both rmse and dtw measurements

for all interval periods shown in Figures 5.7b, and 5.7d. This is probably due to the significantly
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larger dataset in cyber-security which is 10x larger than the crypto-currency dataset. A larger

dataset generally helps our machine learning models to train and make better predictions. In gen-

eral, our improved performance over baselines is likely due to incorporating original post information

in generating the conversations and optimizing branching factor and propagation delay in the pre-

dicted pool of conversations. The baseline models do not account for such attributes but only replay

the past events.
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Figure 5.8: The number of unique users over time. We report the performance of predicting the
number of unique users over time for crypto-currency and cyber-security discussions using two
quantitative metrics, (a,b) Dynamic Time Warping (DTW) (lower is better), (c,d) RMSE values
(lower is better) after comparing each model predictions with the ground truth over different time
intervals. Checkpoint windows are in days (D).

And finally, our model performs better than the baselines in the number of users engaged

over time in these conversations. For Reddit-like conversations, this is a challenge since discussions

may lead to provocative, offensive, or menacing comments that end up repeatedly involving a sub-

group of users [132]. For example, there are only 6,818 users who participate in 32,533 comments in
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crypto-currency discussions. In the largest conversation, the ratio between the number of comments

and the number of users is 2.35 in the ground truth, and 2.06 in our solution. Our model tends

to over-predict the number of users engaged a short time after the seed messages are posted (as

shown in Figures 5.8c and 5.8d for the interval 1D–5D), and consistently performs well for the more

distant future. As shown in Figures 5.8a - 5.8d, our solution achieves the lowest DTW and RMSE

values for the interval 5D–7D across two datasets, respectively. This is particularly relevant because

it shows our model’s predictive power for longer-term simulations: from the 6th to the 28th day of

the simulation period, our model consistently predicts better the number of users and the timing of

their comments.

5.3.4 Collective Behavior

Another important characteristic related to user engagement is the co-engagement with

various topics. Specifically, empirical studies [193] have shown coordinated campaigns run as troll

farms or cyborgs, where groups of users engage in multiple related conversations to shift the opinion

of the general audience.
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Figure 5.9: The number of users who engaged with conversations. We show the comparison with
the baseline models. The values in the y-axis are binned by the intervals of 10 in the x-axis.
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We report two measurements to capture the collective behavior of users who participate in

these conversations. First, we present the number of users engaged in multiple conversations (as

shown in Figures 5.9a and 5.9b). Specifically, we record the number of conversations that a user

engaged with, and count the users who engaged with X number of conversations (1 ≤ X ≤ 3740).

We noticed a heavy-tailed distribution, where few users engage in many conversations. We calculate

the JS divergence between each models’ distribution and the ground truth distribution. Lower JS

divergence values reflect predictions closer to the number of actively engaged users observed in the

ground truth.

Our solution achieves the lowest JSD value of 0.05 (crypto) and 0.07 (cyber) after comparing

with the respective baseline models. We also predict the number of highly active users closer to the

ground truth value than any other baseline solution. In the crypto-currency discussions, we predict

1,916 users who engage with more than two conversations, while there are 2,438 such users in the

ground truth and 1,310 such users in the best-performing baseline solution. Our relative success

is due to implicitly accounting for simultaneous conversations with possibly common users in our

modeling of the problem as a pool of conversations. Specifically, our LSTM-based model that helps

to select the best pool of conversations accounts for user participation in multiple conversations,

thus is able to predict better the number of highly engaged users than a model that simply repeats

the past.

Second, we evaluate whether users participate in these conversations as a group according

to a metric (collectivity) proposed by [181]. We record user participation in conversations in

a vector [c1, c2, ..., cn], where ci indicates a binary value to reflect the user involvement in the

ith conversation. For this metric, we only consider the most active users who participate in at
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least three conversations (on average, a user participates in two conversations in the ground truth

dataset). The original paper [181] used the Pearson correlation coefficient to compare all pairs of

binary vectors. The higher the correlation coefficient values, two users participate in the same set

of conversations. They also used the Jaccard coefficient to compare the overlap of conversations

between two users. According to their experiments, the Pearson correlation coefficient and Jaccard

coefficient values are correlated. While we do not experiment with any other similarity metric (e.g.,

Hamming distance), we believe they would result in distributions similar to what was observed

using the Pearson correlation coefficient or the Jaccard coefficient. In this work, we use the Pearson

correlation coefficient to quantify the collective behavior of user involvements.

We calculate the JS-divergence and RMSE between the coefficient distributions of the sim-

ulation and the ground truth data (as shown in Table 5.9). Lower JS-divergence values reflect

collective behavior closer to that measured from the ground truth. We achieve the lowest 0.07 and

0.12 JS-divergence values, and lowest 1,815 and 976 rmse values for the respective domains after

compared with the respective baseline models.

Table 5.9: A comparison of the collectivity scores. We report the collectivity scores of users who par-
ticipate in multiple conversations. We show JS-divergence (JSD) and RMSE values after comparing
each models’ distributions of collectivity scores with the ground truth values. We do not report the
number of these measurements for the Lumbreras Model as it does not predict user assignments.
We highlight the lowest JSD and RMSE values in bold.

Model Collectivity
JSD RMSE

Crypto

Baseline (recent-replay) 0.09 8036
Baseline (random) 0.14 8210
Lumbreras Model - -

Genetic-LSTM (our solution) 0.07 1815

Cyber

Baseline (recent-replay) 0.12 1779
Baseline (random) 0.23 3049
Lumbreras Model - -

Genetic-LSTM (our solution) 0.12 976
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In summary, our experimental results show that in addition to accurately predicting the

structural properties of individual conversations, predicting pools of conversations also leads to

more accurate predictions of user involvement over time.

5.4 Summary and Discussion

This chapter introduces a generative technique for predicting a group of simultaneous con-

versations in social media. Our solution uses a probabilistic generative model with the support of a

genetic algorithm and LSTM neural networks. We tested our technique on two topic-based collec-

tions of Reddit conversation trees. Given a set of posts in a continuous time interval, our solution

generates the full set of reactions to each message, including reactions to reactions, without having

access to, for example, intermediate states of the conversation tree. In addition to generating the

structure of conversation trees, our solution also assigns authorship and timing information to each

message. The code for this framework is available publicly [194].

Our solution captures the relationship between different microscopic conversation properties

including the structure, propagation speed (timing), and the users who participate in a set of si-

multaneous conversations. We trained two LSTM models on pools of conversations to capture this

relationship. In the first model, we predict whether a node in the conversation is branching (thus,

generating more reactions) or is a leaf in the conversation tree. The second model classifies messages

by the delay which they are posted in response to their parent. Both models use structural, user,

and content features in the temporal space. While structural and content-level features represent

the characteristics of individual conversations, the user-level features capture the characteristics of

users who participate in simultaneous conversations. In the genetic algorithm, we assess the likeli-
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hood of a user’s action in a conversation based on the output of these two machine-learning models.

Experimental results show that this technique can generate accurate conversation topological struc-

tures over time, and can accurately predict the volume of messages and the engagement of users

over time.

We show the effectiveness of our approach on two groups of highly related communities:

nine subreddits focused on crypto-currencies and 38 subreddits focused on cyber-security topics.

The prediction of user involvement over different simultaneous conversations can also be used by

community organizers to control the focused discussions or to promote positive community norms.

Our solution has a number of limitations. One is that in evaluating the generated conver-

sation trees, our model arbitrarily maps the content-level features from a distribution built from

training data. In an ideal scenario, we should predict the attributes of the comments (e.g., polarity,

subjectivity) to draw these features accurately. Moreover, a rich set of content-level features to cap-

ture humor, adversity, emotions, etc. could be developed to improve the machine-learning models.

Another limitation is that our approach tends to repeat in predicting the user interactions seen in

the training data. A better approach would use information about the users who have been exposed

to a message and thus may be candidates for responding. However, this true diffusion structure is

hidden and inferring it is difficult [195].
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Chapter 6: Simulating Twitter Activity Using Exogenous Signals4

Social media platforms provide a virtual space for online communication, and they often

get influenced by what happens in the outside world. These external factors can be independent

of what is recorded on a social media platform, and most often related to environment, policy,

or culture [13]. For example, Twitter users react spontaneously during natural disasters (e.g.,

the 2010 Haiti Earthquake [196], Hurricane Irma [197]). There are various cultural habits that

influence online communication patterns [198]. Some policy decisions such as deplatforming [199]

or content moderation [200] can shape social media communication. However, the influence from

these external events can not be easily measured (or decoupled from other factors), or explicitly

controlled. Distilling these various external forces is key to improving the general understanding of

information dissemination in social media platforms.

One of our driving hypotheses is that taking external events into consideration may result in

better predictions of user activity on a social media platform. Can one accurately generate the social

media activity on a platform (for example, Twitter) using the recorded signals from other platforms?

More importantly, is that doable in the context of unexpected events, when social media users both

react to unexpected news in unpredictable ways and also generate news for many news outlets? Our

objective is to predict Twitter activity with the help of exogenous sources (as shown in Figure 6.1).

Our predictions include when a Twitter message is posted, what it is about (topic), who tweeted the

message, and who retweeted that message (as described in Section 4.2). This finer granularity of
4A part of this chapter was previously published in [4]. Permission is included in Appendix A.
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Figure 6.1: Predicting Twitter topic activity using exogenous data.

simulated activity makes the problem more difficult than simply predicting the overall daily volume

of activity.

We focus on simulating an interval of two weeks at daily granularity. That means that, unlike

most machine learning-based approaches that try to predict the next data point, we are predicting

the activity of day d without having the ground truth of the activity on day d − 1. We predict

Twitter activity around Venezuela’s latest political crisis from January 2019 to the end of February

2019. By their nature, periods of crisis do not include many repeatable events, thus it is difficult to

learn and predict how social media users will react to a first refusal of international humanitarian

aid, for example, or to a second round of violence against street protesters. As exogenous data, we

mine news articles and the Venezuela-related subreddit, /r/vzla. The contributions of this chapter

are the following:
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• We present the design of a simulator that can mimic the peaks of real activity. The successful

design includes modularization in order to specialize predictions to particular sub-problems,

such as the prediction of the number of information cascades and the prediction of the size

and growth of these cascades.

• We show that predictions using current day exogenous data work better than models that use

previous day exogenous data. We push boundaries by questioning the accepted practice of

using historical information from before midnight. We make the case that social media users

react rapidly to news and live events, so the past is sometimes just 30 seconds ago.

• We discuss how different sources of exogenous data are beneficial for different topics that are

part of the same large conversation.

This chapter is organized as follows. First, we present the simulator design and implemen-

tation in Section 6.1. Second, we describe the datasets that we use for the evaluation in Section 6.2.

Third, Section 6.3 reports the simulation performance in various metrics of interest. And finally,

Section 6.4 concludes with a discussion of our contributions.

6.1 Simulator Design and Implementation

Twitter users often engaged with a variety of topics over time and their reactions are often

influenced by external events [192, 201]. Thus, simulating Twitter activity requires the use of signals

of real-life events from exogenous data sources.

This section presents the design of a social simulator that accurately predicts Twitter activity

with the help of exogenous data. Our goal is to predict two weeks of Twitter activity without any

knowledge of the ground-truth Twitter activity during that period. The predicted Twitter activity
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should be described by the type of action (tweet or retweet), topic, author, and the timestamp of

the message.

6.1.1 Modular Design

Our design contains two modules, as shown in Figure 6.2. The Seed Module takes the

historical activities in Twitter and other platforms as inputs and predicts the daily number of

tweets (that we refer to as seed events) for each topic (Section 6.1.2). Second, the Cascade Module

takes as input the outputs of Seed Module and generates retweet cascades in response to the seed

events (Section 6.1.3). This module is similar to the solution proposed in the previous chapter

(Section 5.1.1) but extends to predict Twitter information cascades. Each message in the retweet

cascades is predicted with the user who posts the retweet and the day of the retweet.

Figure 6.2: Overview of the proposed simulator design.

6.1.2 Seed Prediction Module

During our many iterations over the design of the simulator on different datasets, we noticed

that correctly predicting the daily volume of tweets sets the tone for more accurate simulations. We
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thus ended up designing a specialized module that is in charge of the task of predicting the number

of tweets per day for the duration of the forecasting window. In addition, this module also assigns

to each tweet the user who authored it.

We first attempted to predict the overall volume of tweets and then split it into topics. It

turned out that accurately predicting the daily fraction of tweets that belong to a topic potentially

informed or drowned out by unpredictable events such as mass protests, military interventions, or

declarations of international support was challenging. We thus decided to directly predict the daily

number of tweets per topic.

We implemented this module using machine learning. We trained a neural network on

Twitter historical activity (expressed as a number of tweets per day) and its contemporary exogenous

data signal. Given the exogenous events of day d from the forecasting window, the trained algorithm

predicts the number of tweets from day d+ 1. We also experimented with using Twitter activity in

day d to predict the Twitter activity of day d + 1. This approach required us to use the predicted

Twitter activity of days 2, 3, etc. of the forecasting window as input for the following day predictions

since by problem definition we did not have the ground-truth Twitter data. This solution ends up

compounding errors, and thus the accuracy drops over time. Moreover, this approach failed to

predict bursts of activity that are evident in the ground truth. This is what prompted us to use

only the volume of exogenous activity to predict Twitter activity.

For training, we built a feature vector that represents the topic as a one-hot encoding vector

and the number of exogenous events related to that topic in a given day d. Exogenous features are

the daily number of news articles and the daily number of Reddit messages related to the topic.

Note that we can combine the exogenous sources or treat them separately. We experimented with
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all versions, but for brevity, we will present experiments with only two, the news only and Reddit

only. The target variable is the number of tweets related to a topic in the day d+1. For training, we

identify the best hyperparameters using 5-fold cross-validation. We ended up with a neural network

of 3 hidden layers with the sizes of 15, 10, and 5 neurons. We used the Adam optimizer and the

mean squared error loss function.

We assigned users to the predicted tweets randomly with probability proportional to the

user spread score [202]. Higher spread scores indicate that the identified users have more potential

to spread the information. While this heuristic is not optimal, it captures the activity of influential

users better than other heuristics that we considered, such as the number of tweets or the number

of followers.

6.1.3 Cascade Generation Module

We use this module to generate the retweet trees (information cascades) in response to

predicted tweets. We chose this approach in order to provide fine-granular predictions that can

mimic user activity patterns, not only volume.

Twitter information cascades consist of a collection of retweets originated from an original

tweet. While the original tweet and retweet messages are labeled with the user and timing informa-

tion, the Twitter API does not provide whether the retweet is in response to another retweet [203].

Due to this limitation, we can only construct the chain of retweets from ordering the retweet mes-

sages by the timestamp. This would construct a retweet star where all the retweets are connected

to the original tweet. However, this is not realistic as most often users retweet other user’s retweets

instead of the original tweet [180]. Different techniques are built to approximate the true retweet
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tree [203]. We reconstruct the retweet tree using the time-inferred diffusion algorithm [110]. This

technique connects a retweet with a previous retweet/tweet utilizing the Twitter follower network.

We use the same probabilistic approach as discussed in the previous chapter (Section 5.1.1)

to generate the cascade structure with users and timestamps. After this procedure, we end up with

cascade trees rooted in an original tweet in which each node has a user and a time assigned. However,

we do not proceed with the optimization step used in the previous solution. This optimization step

requires the output of two machine learning models that use the features for the users who posted

the messages. These users appear in both training and testing data, thus allowing the model to

make predictions based on their history. But we noticed that new users make up the majority of

the Twitter population. Due to this limitation, we rely on a separate sub-module that predicts the

daily rate of newly engaged users to inform the cascade generation process.

In this sub-module, we rely on the same feature vectors as used before in the seed module,

and construct two sets of training examples depending on the exogenous source (in our case, news

articles and posts on Reddit) that we select to extract features. We trained one neural network for

each set of training examples, and used the trained neural networks to predict the daily number of

newly engaged users for each topic. Similar to the seed module, we used the exogenous events on

the day before the predictions.

We assign new users to the cascades as follows. We select leaves of the cascades predicted

for each topic and assign those users a completely new and unique identifier. This approach is due

to our observation that the majority of new users participate in the cascades as leaf nodes (i.e.,

they retweet the original tweet or another retweet, but their retweets are not reshared back). This

process is repeated until we match the daily number of new users predicted.
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6.2 Datasets

For the last two decades, the Venezuelan society has experienced a pervasive sociopolitical

fragmentation fueled by differences of interests, identities, and politics. In Venezuela, the political

spectrum is for the most part divided into two parties: Chavism, those who support the political

ideology of the late president Hugo Chavez, and Anti-Chavism, those strongly opposed to Chavez’s

legacy. Today Chavism still maintains control of the Venezuelan political system with Nicolas

Maduro as the head of state. However, failure to manage globalization, lack of investment in

infrastructure, and a poor administration have put the country in the grip of a significant economic

collapse. As a result, it has contributed to a significant rise in crime and violence, lack of essentials,

shortages of medicines and food, and an unprecedented humanitarian crisis.

6.2.1 Venezuela Political Crisis Events

For this study, we focus on data specific to on-the-ground events in Venezuela developing in

early 2019. These events highlight a period of high political tension which resulted in nationwide

protests, militarized responses, and incidents of mass violence and arrests. Figure 6.3 shows a

summarized timeline of the political events described below.

The 2019 Venezuelan political crisis has its roots in the controversial re-election of Nicolas

Maduro as the country’s president on January 10th. The event marked the beginning of a presiden-

tial crisis driven by claims of illegitimacy and reports of coercion and fraud. During the following

days, the opposition-controlled National Assembly widely denounced the re-election as fraudulent

and mandated an order of succession. On January 23, the opposition leader, Juan Guaidó, declared

himself interim president of Venezuela in an effort to restore democracy and constitutional rights.
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The event erupted widespread protests to put pressure on Maduro’s administration to resign from

office, and it formed a coalition of countries in support of Guaidó. In response to this, Maduro’s

government ordered the armed forces into the streets to maintain social order and disperse mass

protests. These intense and violent clashes between the military and opposition supporters contin-

ued during the first couple of weeks of February and resulted in massive lootings, a large number

of detentions, and dozens of injured.

On February 2, Guaidó announced a plan together with an international coalition to bring

humanitarian aid into Venezuela on February 23. At the same time, Maduro rejected international

aid offers and ordered the immediate closure of the Brazilian and Colombian borders to impede its

delivery. A day before the international aid delivery, two dueling concerts took place simultaneously

at the Colombia-Venezuela border. The "Aid Live" concert was organized with the purpose to help

raise money and support for the international humanitarian aid effort. On the other hand, Maduro’s

government organised the "Hands Off Venezuela" concert to counteract the rival concert and reject

aid efforts. On February 23, the plan to bring humanitarian aid into Venezuela was met with a

violent standoff between military forces and those accompanying the aid. Clashes continued to run

rampant over the next couple of days, and eventually, it was reported that none of the aid shipments

were able to enter the country.

6.2.2 Data Collection and Processing

In this section, we describe the Twitter dataset covering the Venezuelan political crisis,

exogenous data sources, and other data preprocessing and enrichment steps in detail.
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Jan 10 –
Maduro’s 
re-election 
for a 6-year 
term

Jan 15 – National 
Assembly 
demands a freeze 
on Maduro’s 
assets in foreign 
countries

Jan 23 – Guaidó
declares himself 
interim president

Feb 2 –
Guaidó plans 
to bring 
humanitarian 
aid to 
Venezuela

Feb 6 –
Maduro orders 
to block Brazil 
and Colombia 
borders.

Feb 12 – Protests 
to demand entry 
of humanitarian 
aid

Feb 22 – Aid Live 
and Hands-off 
Venezuela concerts 
take place

Feb 23 – Violent 
standoff as 
humanitarian aid 
arrives for 
Venezuela

20192019

Figure 6.3: Timeline of Venezuela political events. We also show the timeseries of Twitter messages
for 12 topics in our dataset. The box represents the testing period for our simulator (February
15—February 28, 2019).

6.2.2.1 Twitter Data

The Twitter data was collected over a period of two months (January 1st to February 28th,

2019) using GNIP, a data collection API tool, and based on a list of keywords relevant to the

Venezuelan political crisis. Table 6.1 presents the complete list of keywords for data collection. The

resulting dataset consists of 1,104,175 seed messages including tweets, replies, and quotes done by

273,392 users, and 11,681,723 retweets by 889,139 users. The majority of messages are in Spanish

(86%) and English (6%). We note that user identities are anonymized in this dataset. Each Twitter

record in our dataset contains the following information: an assigned unique identifier, the unique

(anonymized) ID of the user who posted it, the timestamp of the message, the respective content

of the message, and its type (whether a tweet, quote, reply or retweet). This dataset was provided

privately as part of DARPA SocialSim program.
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Table 6.1: Keywords used for data collection.

#23Ene, #23Feb, 23 de Enero, 23 de Febrero, Aid Venezuela, #BravoPueblo, Caracas,
Maturin, Maracaibo, #Chavismo, #Chavistas, FANB, #FreeVenezuela, #FueraDictadura,
Fuerza Venezuela, GNB, #GritemosConBrio, #GuaidoPresidente, #JGuaido, Juan Guaido,

#LasCallesSonDelChavismo, Leales siempre traidores nunca, Libertad para Venezuela,
Freedom for Venezuela, #VamosBien, #MaduroDictador, #MaduroUsurpador, Nicolas

Maduro, #SOSVenezuela, #VenezolanosEnElMundo, Venezuela Aid Live, #WeAreMaduro,
Yankee go Home, #HandsOffVenezuela, #FebreroRebelde, #NoMasDictadura, Maduro,
#AbajoCadenas, Venezuela Crisis Humanitaria, Maduro Ilegitimo, Guaido, Chacao

In order to annotate Twitter messages with topics, we worked alongside three research collab-

orators, who are subject-matter experts regarding the Venezuelan political context. The annotators

are fluent in both English and Spanish, and also familiar with particular jargon and specialized

terms commonly used in Venezuela. We conducted a thorough exploration of our dataset corpus

in order to identify the most representative topics originating from online social media discussions.

Our initial attempt at topic assignment resulted in the identification of 10 top-level topic groups:

Guaidó, Assembly, Maduro, protests, arrests, violence, international, military, crisis, and others.

While some of these top-level topics express important information on their own (e.g., protests,

arrests), others have no well-defined meaning or are too vague on their own (e.g., international).

Hence, some top-level topics were further extended to account for more informative and detailed

semantic topic groups. For example, the international topic was broken down into other sub-topics

(e.g., international/aid and international/aid_rejected). These sub-topics are more focused and

make explicit reference to specific on-the-ground events unfolding in Venezuela. Overall, this ef-

fort resulted in a total of 49 sub-topics. Practically, it is not feasible to manually label millions of

messages. So, in order to automate the annotation process, we conducted a semi-supervised classi-

fication task consisting of two steps: (1) manually annotating an initial subset of messages, and (2)

training a multilingual BERT model to classify each message with one or multiple such sub-topics.
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The manual annotation process was conducted over a corpus of 11,218 messages and con-

sisted of an 8 to 1 ratio of single-annotator annotations to all-annotator annotations. That is, for

every 8 messages annotated by each annotator individually, there is one message that all annotate.

Periodically, we calculated the inter-annotator agreement given by Cohen’s Kappa and Fleiss’ Kappa

scores. This process allows us to identify and ignore topics with low reliability and quality. Particu-

larly, we narrowed down our initial 49 topics to the following 12 topics: international/aid, military,

violence, guaido/legitimate, maduro/dictator, international/aid_rejected, protests, other/chavez,

maduro/legitimate, arrests, other/chavez/anti, and maduro/narco. These 12 topics reported inter-

annotator agreement scores of 0.64 for the weighted average Cohen’s Kappa, and 0.7 for the Fleiss’

Kappa measurement. Previous work has also found similar Cohen’s Kappa agreement scores in a

variety of datasets [204].

After manual annotation, we trained a BERT model for topic annotation. Previous works

have found great success using BERT for multilingual text classification tasks [205]. Hence, in this

study, BERT is preferable since our dataset consists of a mix of multiple languages. The BERT

model was trained on 10,097 unique text documents and evaluated on a 10% test set (1,121 texts).

We used stratified sampling to ensure that the train and test sets have approximately the same

percentage of samples of each topic class as in the original manually annotated corpus. The model

obtained a precision of 67%, recall of 66%, and F1 score of 66%.

6.2.2.2 Exogenous Data

In order to evaluate the interplay between Twitter activity and the different signals from

contemporary exogenous data, we collected data from Reddit as well as mined news articles rele-

vant to the Venezuela political crisis. We collected discussions structured around one of the largest
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Venezuela-related subreddits, /r/vzla. The subreddit Venezuela community often engages in po-

litical discussions about the political spectrum in the country, which most likely are not going to

be covered in conventional news outlets. Hence, it offers a different perspective about the ongoing

political crisis in Venezuela and may provide useful signals to predict online activity on other plat-

forms. The Reddit data was collected via the publicly available Reddit API. A query against the

period of January 1 to February 28, 2019 returned a total of 4,933 posts and 51,136 comments done

by 3,220 users. The corresponding text content on posts and comments and the timestamp of the

postings were also collected.
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Figure 6.4: Timeseries of tweets, news articles, and Reddit messages.

The news article data was collected via a publicly available geopolitical event database,

GDELT [206]. The database consists of machine-coded events extracted from news reports on a

variety of news sources. The GDELT database is updated from the news articles published every 15

minutes intervals. We queried the database using the "Venezuela" search term between January 1
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and February 28, 2019. This returned a total of 138,009 source URLs, where the Venezuela keyword

occurs anywhere in the content of the document. We also gathered the source text for each article

and the date when it was published. We used the article reference time in GDELT to retrieve the

hour of publication.

We assigned topics to exogenous data by running the previously pre-trained BERT model

over the content of news articles and Reddit messages. We randomly sampled 500 Reddit posts and

news articles to measure the reliability of this classification. We were only able to find 5% false

positives. This results in a total of 2,021 posts and 31,295 comments on Reddit, and 81,887 news

articles to be associated with at least one topic of interest. Figure 6.4 shows the hourly activities

of Twitter and respective exogenous sources.

6.3 Evaluation

We measured the accuracy of the generated Twitter activity per topic by comparing it

against ground truth and against two baselines. We report performance using three metrics: (i) the

daily activity volume as represented by the number of tweets and retweets, (ii) the number of newly

engaged users every day, and (iii) the page rank distribution of the user interaction network.

Due to the complexity of our prediction problem (e.g., who responds to whom in which topic,

and when), comparing our solution with other related work is not straightforward. We compare our

solution with two baselines extracted from training data. The first baseline, Replay, simply repeats

all events from the past two weeks. Thus, the only change is in the timestamps of the events

and there are no new users (since every user was also active exactly two weeks before in the same

topics). The second baseline, Sampling, draws full Twitter cascades at random to match the average
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daily volume of activity per topic observed in the last two weeks of training data. Thus, while this

sampling ignores the variations in volume from one day to another (see the corresponding flat line

in Figure 6.6), it aims to approximate the overall volume of shares over a 2-week period. Because

these baseline models repeat events from the recent past, they are very challenging to outperform

in simulating user activities in multiple social platforms, as shown in [107].

6.3.1 Predicting the Number of Shares

Predicting the number of shares for each topic is challenging because of burstiness and be-

cause different topics dominate at different times [148]. For example, the two big spikes in Twitter

activities during the last two weeks of February (Figure 6.3) are mainly due to the Venezuelan Aid

Live concert on February 22, and the violent standoff between military forces and those accompa-

nying the aid and protesting against the regime on February 23. While the spike on February 22

was dominated by activities related to international/aid topic, the spike on February 23 was due

to three topics popular that day: military, violence, and protests. This is where exogenous data

(especially extracted from news reports) can be valuable for capturing the variations in popularity

of Twitter topics over time.

We evaluated our solution on predicting the number of tweets per day per topic during

the forecasting period. Figure 6.4 shows that the GDELT exogenous data precedes Twitter (and

Reddit) activity. This observation suggests, on one hand, that Twitter reacts very quickly to the

peak of news as recorded in GDELT; on the other hand, there are few updates after about 8 am in

GDELT. Reddit discussions are quite spread out over the day, but many comments in our dataset

are posted in late afternoon.
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We thus tested three scenarios corresponding to the time of the exogenous data. First,

exogenous features are from the day of predictions. This scenario is realistic in the context of filling

in gaps of data from the past (thus, the events as recorded in exogenous data already happened).

The second scenario assumes that the exogenous data are from the previous day. This scenario

holds even for the context in which our Twitter activity generator predicts the future based on a

recent past. The third scenario corresponds to the assumption that exogenous data is from the

past, but we roll the day from 8 am to 8 am, in order to catch the peak of activity in GDELT, thus

challenging the common practice of delimiting days at midnight. This scenario allows for a shorter

delay between the GDELT peak of events and the start of the daily Twitter activity patterns, yet

is realistic for both predicting future activities and generating past activity. For each scenario we

extracted the corresponding features and trained three neural networks.

We report the accuracy of predicted daily volume of activity by two metrics: normalized

root mean squared error (NRMSE) and symmetric mean absolute percentage error (SMAPE). For

NRMSE, we take the normalized cumulative values in the prediction and ground truth vectors

to calculate the root mean squared error. While NRMSE is scale-independent and evaluates the

temporal patterns of two time series, SMAPE accounts for the scale of the error.

Figures 6.5a and 6.5b show the performance of predicting the volume of tweets over time

for the 12 topics. We note the following. First, multiple variants of our solution capture the trend

of the number of tweets closer to the ground truth than any baselines for most of the topics. As

reported in Figure 6.5a, all the variants of our solution perform better than the baselines in NRMSE

for all topics. More importantly, we predict the big spikes in the number of tweets for most of the

popular topics (as shown in Figures 6.6a and 6.6b). While the Replay baseline predicts some spikes,
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Figure 6.5: Model performance of predicting tweets over time. We also report the performance of
MCAS (News 8-8") and MCAS (Reddit 8-8") that use the respective exogenous features from the
last 24 hours before 8 a.m. each day to predict the tweets in the next 24 hours.
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they are not timed similarly with the spikes in the ground truth, clearly making the point that

contemporary exogenous data is necessary for accurate forecasting.

Second, our solution fares better than the baselines not only in trend, but also in the actual

volume of tweets over time. As shown in Figure 6.5b, our solutions perform better for all topics

except for arrests. For the most popular topic (international/aid), the minimum SMAPE is 61,

while Replay baseline records a SMAPE value of 99. Our worst performance is for the arrests topic,

where our solution failed to accurately predict the scale of multiple spikes. We noticed that the

spikes in arrests are not correlated between Twitter and other exogenous platforms. This might be

due to the emotional response in Twitter for the discussions related to the arrests topic that might

not be timely captured in the news articles or Reddit messages.

Third, out of the two models that use the current day exogenous features, the model that

used only Reddit features predicts the trend of tweets better than the model that used only news

features in all topics except for international/aid (as shown in Figure 6.5a). We noticed the online

community in Reddit who often engage in political discussions may provide a different perspective

about the on-going political crisis than what is usually covered in the news articles. These external

signals that originated from Reddit are helpful to predict the trends of activities on Twitter for

many topics. The exception in the performance of the topic international/aid might be due to the

timely coverage of the humanitarian aid effort in news articles.

Fourth, as expected, using current day exogenous data leads to more accurate predictions

than using the previous day exogenous data. As shown in Figures 6.5a and 6.5b, the model that

uses the current day exogenous features records lower NRMSE and SMAPE values than the models

that used the previous day exogenous features for most of the topics. We noticed the models that

130



02
-1

5

02
-1

6

02
-1

7

02
-1

8

02
-1

9

02
-2

0

02
-2

1

02
-2

2

02
-2

3

02
-2

4

02
-2

5

02
-2

6

02
-2

7

02
-2

8

Time (Days)

103

104

# 
Tw

ee
ts

Ground Truth
Replay
Sampling
MCAS (News)
MCAS (News )
MCAS (Reddit)
MCAS (Reddit )

(a) international/aid

02
-1

5

02
-1

6

02
-1

7

02
-1

8

02
-1

9

02
-2

0

02
-2

1

02
-2

2

02
-2

3

02
-2

4

02
-2

5

02
-2

6

02
-2

7

02
-2

8

Time (Days)

103

104

# 
Tw

ee
ts

Ground Truth
Replay
Sampling
MCAS (News)
MCAS (News )
MCAS (Reddit)
MCAS (Reddit )

(b) military

Figure 6.6: The number of tweets per topic. MCAS (News) and MCAS (Reddit) models use
the respective exogenous features from the day of predictions, while MCAS (News") and MCAS
(Reddit") models use the respective exogenous features from the day before the predictions. We
only visualize the time series for the two most popular topics to reduce visualization clutter.

use the news articles in the last 24 hours before 8 a.m. perform better on predicting the trend of

tweets than the models that use the news articles in the previous day of predictions (as shown in

Figure 6.5a). This might be due to the particularity of the GDELT database, where the majority

of news records were published around 5-6 am (as shown in Figure 6.4).

We also compare the volume of total shares on the same metrics between the prediction

and ground truth. While the seed module (Section 6.1.2) is responsible for predicting the number

of tweets and thus the number of information cascades, the size and growth of these cascades (i.e.,

retweets over time) are predicted by the cascade module (Section 6.1.3). To maintain consistency

across our different modules, we also generate retweets for the tweets predicted by different variants

of the seed module, but only report the performance for four variants to reduce the visual clutter.

Figures 6.7a, 6.7b, and 6.7c show the performance of predicting the volume of total tweets and

retweets for the 12 topics. We have two main observations.

First, similar to the performance of the seed module, the cascade module also captures the

trend of number of shares closer to the ground truth than any baselines for most of the topics. We
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#NU-NRMSE
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Measurement (metric)

international/aid
military

violence
guaido/legitimate

maduro/dictator
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pi

c
0.131 90.2 0.141 76.4 4.17e-06

0.136 66.9 0.144 79 4.05e-06

0.169 107 0.152 89.2 1.32e-05

0.0908 110 0.139 80.3 2.43e-05

0.123 86.3 0.151 85.3 1.08e-05

0.157 117 0.139 87 3.49e-05

0.204 80 0.171 98.5 1.23e-05

0.111 54.7 0.155 86.1 1.07e-05

0.061 111 0.0999 63.5 5.01e-05

0.0527 86.5 0.144 86.9 3.14e-05

0.0852 33.8 0.148 70.9 2.36e-05

0.187 81.9 0.179 100 8.71e-05

(a) MCAS (News")
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0.171 101 0.158 81.6 7.05e-06

0.163 70.6 0.165 80.9 4.15e-06

0.145 87.1 0.166 108 9.74e-06

0.147 76.7 0.143 94.5 1.02e-05

0.111 51.1 0.142 92.5 4.19e-06

0.152 155 0.176 128 6.36e-05

0.156 91.7 0.152 94.6 6.65e-06

0.151 73.2 0.149 88.2 7.13e-06

0.072 94 0.0915 77.8 2.24e-05

0.109 97.1 0.126 70.5 2.46e-05

0.161 80.2 0.15 80.4 1.52e-05

0.153 70.2 0.161 100 3.91e-05

(b) MCAS (Reddit")
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0.105 72.5 0.126 77.8 2.61e-06

0.126 59 0.139 76.5 4.13e-06
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0.116 101 0.125 71.6 1.95e-05

0.139 75.2 0.133 74.1 7.48e-06

0.102 118 0.0947 87.9 2.66e-05

0.123 83.8 0.145 80.1 1.9e-05

0.144 64.8 0.144 83.4 6.89e-06

0.0777 120 0.1 62.3 7.01e-05

0.108 92.5 0.126 79.8 2.97e-05

0.1 54.3 0.141 68.3 2.85e-05

0.16 76.7 0.177 95.9 9.16e-05

(c) MCAS (News 8-8")
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0.0609 61 0.169 132 3.07e-06

0.0895 47.1 0.154 78.5 1.8e-06

0.127 59.8 0.167 91.6 3.1e-06

0.0777 61.5 0.105 83 3.58e-06

0.05 43.6 0.134 69.5 3.2e-06

0.0609 59.3 0.171 152 2.38e-05

0.106 71.2 0.162 93.1 3.57e-06

0.06 62.7 0.135 84 7.86e-06

0.111 63.4 0.0892 77 3.11e-05

0.0595 60.5 0.117 62.7 1.21e-05

0.0766 82.5 0.135 79.3 2.02e-05

0.0749 88.1 0.16 97.3 1.5e-05

(d) MCAS-GT-Seed

Figure 6.7: Overview of the accuracy in forecasting Twitter activity. We report performance in
five metrics (shown along the x axis) after compared with ground-truth data: daily number of
tweets/retweets over time (#S) as measured by NRMSE and SMAPE, daily number of newly
engaged users over time (#NU) as measured by NRMSE and SMAPE, and page rank distribution
(PR) of the user interaction network as measured by Earth Movers (EM) distance metric. The
colors of the cell represent comparison with the baselines: the darkest shows better performance
than both baselines, the non-colored shows lower performance than both baselines. MCAS (News
8-8") uses the respective exogenous features from the last 24 hours before 8 a.m. each day to
predict the tweets in the next 24 hours. MCAS-GT-Seed uses the ground truth tweets to generate
retweets.

noticed the temporal pattern of total shares is driven mostly by the temporal pattern of tweets

predicted by the seed module.

Second, our solution captures the volume of shares over time for most popular topics (as

shown in Figures 6.8a and 6.8b) except international/aid-rejected, maduro/legitimate and arrests

(as shown in Figures 6.7a and 6.7b). While we predict the number of tweets using a learning
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Figure 6.8: The number of shares (tweets and retweets) per topic. MCAS (News) and MCAS
(Reddit) models use the predicted tweets from the respective exogenous features, and MCAS-GT-
Seed uses the the ground truth tweets to generate retweets. We only visualize the time series for
the two most popular topics due to space constraints.

algorithm, the number of retweets is the output of a generative algorithm. Thus, we expected

that prediction errors in the seed module carry over to the predictions in the cascade module. For

example, the lowest performing topics in the seed module (international/aid_rejected, arrests) is

the lowest performing in the cascade module as well.

In order to separate the errors from the seed module (predicting tweets) and the cascade

module (predicting retweets based on input tweets), we include in our evaluation the unrealistic

scenario when the tweets from the ground truth data are given as input to the cascade module. As

expected, we predict the volume of retweets more accurately when the cascade module used the

ground truth tweets (as shown in Figure 6.7d).

6.3.2 Predicting User Engagement

While our solution assigns a user identity (whether previously seen in the training data or

not) to each tweet and retweet, we do not attempt to predict exactly what user will post when and

on what topic. However, we evaluate the accuracy of user assignments by comparing the rate of
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newly engaged users, and the user interaction with the ground truth. This is particularly relevant

for application scenarios such as designing network intervention techniques, when one would like

to investigate "what if" scenarios (e.g., blocking some user accounts) and their consequences at

particular times.

First, we report the predicted number of new users per day compared with ground truth

data in the same two metrics as before, NRMSE and SMAPE. Figures 6.7a and 6.7b show that

our models outperform the respective baselines across all 12 topics with respect to NRMSE and

SMAPE. We also found that the performance of our solutions varies based on the topic of interest.

For instance, models using only Reddit features show better performance than those using only news

in other/chavez and maduro/narco topics, as shown in Figure 6.7b. On the other hand, models using

news features seem to do slightly better in the violence and international/aid_rejected topics. This

suggests that different exogenous sources offer unique signals that are helpful for a particular set

of topics, but not all. For example, the Venezuela subreddit tends to engage more in discussions

expressing dissatisfaction towards the current government, which may not necessarily be reported in

the news articles. Hence, Reddit features could potentially be more valuable and stronger predictors

than news features for those topics expressing signs of discontent with the Venezuelan government.

Second, we are interested in comparing the user interaction networks of the predicted activity

and the ground truth data, focusing again on each topic independently. For this, we split the events

in the prediction and ground truth dataset by topic. Then, we create a directed retweet network

for each topic in which an edge points from the user who retweeted to the user who posted the

tweet. Finally, we calculate the page rank distributions, and compare the predicted distributions

and ground truth distributions using Earth Movers (EM) metric distance [207].
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We report the performance of network structural measurements in Figure 6.7. Our observa-

tions are the following. The page rank distribution of the user interaction networks is closer to the

ground truth than the Sampling baseline method for a majority of topics (as shown in Figures 6.7a,

and 6.7b). For example, our solution records the lowest EM distance values in the three most

popular topic networks compared to both Sampling and Replay baseline (Figures 6.7a).

We also learnt that the network structures predicted by the Replay baseline model are hard

to beat in this network measurement. As we generate cascades starting from the seed user positions

in the user interaction network, the correct seed user assignments matter in our solution to predict

the network structure more accurately. To understand the impact of seed user assignments, we run

the cascade module for the ground truth seeds with the correct authorship information. For a fair

comparison, we keep the same cascade parameters across all solutions. This solution accurately

predicts the page rank distribution for most of the topics (as shown in 6.7d). Since we randomly

select users previously seen in training data, we only predict the long-lived users as seed users who

tend to be more influential in the forecasting period. We believe future improvements on seed user

assignments will improve the overall results on network structural measurements.

6.4 Summary and Discussion

This chapter presents the design and evaluation of a simulator capable of generating realistic

Twitter activity during intense real-world events that lead to peaks of activity and a changing

mixture of popular topics. The simulator uses Twitter data and data from exogenous sources (such as

Reddit and news articles as recorded in GDELT) for training, and produces Twitter activities (with

details on which user tweeted or retweeted when and on what topic) over two weeks during which only
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contemporary exogenous data is available to the simulator. We show on real data collected during

the Venezuela political crisis from January-February 2019 that our simulator generates activities

that follow the ground truth timeseries per topic in terms of message volume and user engagement.

Our code is available for download [194].

Various observations from our effort on this problem may be relevant to researchers focused

on related topics. First, taking into account exogenous data is necessary for simulating the activ-

ity of some social media platforms, especially Twitter. What sources of exogenous data are most

representative depends on the topics of interest. For example, we discovered that Reddit conver-

sations more accurately predicted the Twitter activity related to the late president of Venezuela,

who is understandably rarely mentioned in the news. Similarly, Reddit discussions about arrests

mirror better the corresponding Twitter discussions than news articles do, perhaps because they

are emotion-charged. It is possible that taking semantics into account will improve the ability of

forecasting some of the more challenging topics [208, 209].

Second, peaks of activity are difficult to predict. While our solution got the timing of the

peaks right for many topics, we sometimes failed to predict the correct volume. Predicting when

the volume of activity for a topic peaks can have many applications, such as identifying the "Pump

and Dump" group activity in crypto-currency.

Third, we showed that, given the very short reaction time to real-life events, it is important

for researchers to re-evaluate what "the past" means. In particular, restricting exogenous data to

the day previous to the one whose activity is to be predicted is unnecessarily limiting. The "past"

on Twitter is only a few minutes ago. Depending on the time granularity of the predictions sought,

a smaller gap between when the exogenous events took place and the Twitter activity to forecast is
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preferable. We showed there are significant improvements in forecasting accuracy based on previous

day exogenous data when the previous day is shifted to capture the peaks of activity that are likely

to set the tone for the next day.

Fourth, we reached this modular design after many trials experimented over different case

studies. In particular, we experimented in the past with end-to-end machine learning algorithms,

including long-short term memory approaches to better capture trends over time. In our experience,

end-to-end solutions will find the middle ground in the multitude of performance metrics it has to

satisfy, but miss exceptional cases (such as peaks of activity or peaks of new users engagement).

A modular design allows for optimization of the most important dimensions of the simulated data

(such as timing or number of tweets) and can also allow for corrections of unlikely outcomes (such

as more users are predicted to tweet than the number of predicted tweets in some time interval).

Our solution has a number of limitations, some by choice and some related to the results

of our evaluation. We chose not to simulate all types of Twitter actions (such as quoted retweets

and replies) because they make up a small percentage (0.8%) of the total Twitter activity volume.

We also chose to ignore semantic information in order to see how much we can push a general

simulator that might be applicable later to different extractions of topics, and different types of

crisis events. We believe semantic information can contribute to such a simulator and we are

interested in addressing this in future work.
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Chapter 7: Conclusions and Future Work

Social media data is useful to understand various properties of online communication includ-

ing polarization [4], influence operations [210], and cross-platform information dissemination [211].

This dissertation contributes to two studies on social network data: protecting the privacy of in-

dividuals in publicly available social network data, and simulating online user activity in various

social media platforms.

We proposed a data-driven framework that identifies the relationships between graph vul-

nerability and graph properties. Specifically, in Chapter 2, we introduced a framework that provides

a quantification of graph vulnerability as measured by the success of a machine-learning based re-

identification attack. This framework provides mechanisms to explain the relationship between

graph vulnerability and graph characteristics. Our study shows that protecting graph privacy is

harder than previously considered [10, 11]. For example, previous studies show that preserving the

degree distribution or the degree correlation increases graph vulnerability [41] and thus disturbing

them is a necessary condition for graph anonymization. We show that preserving other network

properties independent of the degree distribution can reveal node identity as well.

In Chapter 3, we improved this framework to measure the cost of graph vulnerability imposed

by the attributes of a labeled graph. We show that the addition of even a single binary attribute to

nodes in a network increases the chance of revealing node identity. Our empirical results show that

graph vulnerability depends on the population diversity with respect to the attributes considered,
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but does not depend on the placement of such attributes biased towards homophily. This improved

understating can guide the data practitioner in selecting anonymization techniques that provide the

appropriate tradeoff between utility and privacy. We make this framework publicly available [42].

The second part of this dissertation contributes to the development of social simulators that

predict social media activity. Specifically, Chapter 4 - 6 present the design of a simulator for a

particular platform that generates realistic user activities.

We proposed a modular design of a simulator to predict finer granular social media activity.

Chapter 5 presents one part of this modular design that generates conversation structures with user

and timing information. We show that the properties of a pool of conversations can be predicted

given only a group of original posts without relying on the initial reactions in the same conversa-

tions [115]. Our methods include machine learning algorithms that help to assess the goodness of

the generated conversations with respect to the authorship, timing and structure of a conversation.

Our code is available for download [194].

This solution had two main limitations. First, the model requires the original post informa-

tion to predict the remainder of a conversation. In an ideal scenario, the simulator would not have

any ground truth information in the testing period. Second, the model can not make predictions

for newly engaged users. In social media platforms like Twitter, a majority of users engaged in

discussions are new (that is, not seen in the past engaged with the same topic of interest).

Chapter 6 presents the overall simulator design that is built from the cascade solution. We

build specialized modules to overcome the limitations presented in the previous solution. First, we

develop a specialized module to predict the original post information. Specifically, we use exogenous

features (such as news articles and posts on Reddit) to predict tweets information (i.e., original posts
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on Twitter). Second, we predict when new users join the discussion by predicting the daily timeseries

of new user engagement. These new users are a subset of the inactive population in social media

discussions, and low degree nodes of the interaction network. These predictions are important when

assigning users to the generated cascades.

We decomposed the simulation problem into various subproblems. For example, we predict

the daily volume of social media discussions (platform-level) per topic (content-level) and distribute

the activity into different user populations (old and new users). Another approach would be to

directly predict the activity streams of individual users, which can be used to estimate the volume

of social media discussions. However, this approach fails when there are millions of users with

different activity patterns (e.g., sparse, bursty, persistent, etc.).

There are various ways that we can improve the performance of a social media activity

simulator. First, there are errors propagated over different modules in a pipeline design. For

example, any error on predicting the volume of discussions can not be resolved later in the pipeline,

as errors are getting accumulated over different modules. Accurately identifying which module

penalizes overall prediction is important to make improvements. How does the improvement made

on the volume predictor impact the network structure predictions? What is the impact of predicting

the rate of new user engagements in predicting the overall volume of discussions? We need to

test the modules independently under different conditions (e.g., a variety of social media datasets,

simulation scenarios, etc.) to check their robustness.

Second, we need to evaluate the usefulness of exogenous features across multiple case studies.

How reliable are the exogenous data sources for predicting the popularity of social media topics

in various social contexts ranging from organic discussions to discussions originated as a part of
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propaganda, influence campaigns? In this line, one can question the reliability of news articles

for predicting social media activity. For example, mainstream and alternative news articles are

shown to promote different topics in a disinformation campaign [212, 210], or the news articles

may be censored as a part of authoritarian propaganda [213]. While we believe the modular design

proposed in this work is generalizable for Twitter activity prediction, we might need to reevaluate

the exogenous features across multiple case studies. There might be new exogenous data sources

that would be more useful in particular cases.

Another direction of future work is to find explanations for the simulator performance. What

characteristics of the data determine the models’ performance? During our performance analysis,

we have seen the simulator performing differently on different topics. This could be partly due to

the influence of external events on the activity of particular topics, or partly due to the regular

patterns observed in the data. For example, we have seen how Reddit messages provide different

perspectives about the on-going Venezuelan political crisis than usually covered in news articles.

On the other hand, there are new patterns emerging in the data that test the generalizability of

simulators. These models learn to simulate according to the way that they have seen the past world

through different data representations. For example, there is a big activity spike in Venezuelan social

media on February 22 due to the humanitarian aid concert. Our simulator has not seen such a spike

in the training data for this particular topic yet manages to predict the spike given the features

extracted from the exogenous sources. In this example, the model interprets the world as seen from

the lens of news articles. This suggests that the model has the ability to learn the fluctuation of

social media activity relative to the exogenous activity. Further work is needed to understand the

data characteristics that can explain the performance of a data-driven simulator. This improved
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understanding would tell us how the models will perform in the future just by looking at data, but

before training any models.
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versions of their work to, with the exception of the final published "Version of
Record", is ArXiv. ACM does request authors, who post to ArXiv or other
permitted sites, to also post the published version's Digital Object Identifier
(DOI) alongside the pre-published version on these sites, so that easy access
may be facilitated to the published "Version of Record" upon publication in the
ACM Digital Library. 
 
Examples of sites ACM authors may not post their work to are ResearchGate,
Academia.edu, Mendeley, or Sci-Hub, as these sites are all either commercial or
in some instances utilize predatory practices that violate copyright, which
negatively impacts both ACM and ACM authors.

Distribute
Authors can post an Author-Izer link enabling free downloads of the Definitive
Version of the work permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse
Authors can reuse any portion of their own work in a new work of their own (and
no fee is expected) as long as a citation and DOI pointer to the Version of Record
in the ACM Digital Library are included.

Contributing complete papers to any edited collection of reprints for which the
author is notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the
Versions of Record in the ACM Digital Library are included. Authors can use
any portion of their own work in presentations and in the classroom (and no
fee is expected).

Commercially produced course-packs that are sold to students require
permission and possibly a fee.

Create
ACM's copyright and publishing license include the right to make Derivative
Works or new versions. For example, translations are "Derivative Works." By
copyright or license, ACM may have its publications translated. However, ACM
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Authors continue to hold perpetual rights to revise their own works without
seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital
Library are welcomed with the approval of the appropriate Editor-in-Chief or
Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then
the work should still have ACM's publishing notice, DOI pointer to the
Definitive Version, and be labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then
ACM considers this a new work in which the author retains full copyright
ownership (despite ACM's copyright or license in the original published article)
and the author need only cite the work from which this new one is derived.

Retain
Authors retain all perpetual rights laid out in the ACM Author Rights and
Publishing Policy, including, but not limited to:

Sole ownership and control of third-party permissions to use for artistic
images intended for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published
by ACM
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