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Abstract—Graph analytic applications have gained traction as
an expressive alternative to mine rich insights but are often
suffered from memory latency and bandwidth bound issues over
general purpose computing. In our study, we focus on designing
a hardware accelerator to improve the efficiency of large scale
graph processing while mitigating these problems. We will review
existing hardware accelerator approaches for graph computation
that exhibit specialized computation patterns including irregular
memory accesses, iterative processing, and burst workloads. We
will discuss key design choices on designing such approaches
to gain advantage over graph execution characteristics. Further,
a comparison over different approaches will be provided with
experimental results.

Index Terms—graph analytics, accelerators

I. INTRODUCTION

Graph processing has been emerged as a new computation
paradigm over large scale data analysis. There are many real
world problems that can be solved using graph analytics
which produce new insights, ranging from modern web-
search to breast cancer treatments. Existence of many graph
processing frameworks would prove the recent interest over
such practices. However, due to the random nature of graph
modeling and computation, many former software frameworks
are limited to the support that general purpose processors could
provide [1].

We focus on two popular graph computation patterns in our
study; vertex-centric [2] and gather-apply-scatter (GAS) [3].
In vertex-centric graph computation, it’s expected that a chain
of frequent memory accesses would occur due to neighbor
traversals as shown in Figure 1.

In gather-apply-scatter (GAS) memory model, the nodes
collect information about 1-hop neighbors and integrate them
to update node states. They are redistributed among other
nodes after specific states have been obtained (Figure 2).

On the contrary, both these memory models are irregular
over random neighborhoods which lead graph computation
to be frequently suffered from poor cache locality on top
of general purpose processors. Thus, on-chip memory is not
effectively utilized due to randomness of graph specific data-
types, and also off-chip memory bandwidth is wasted due to
out of pattern access [1]. Also it could yield a significant delay
to get data from memory to computation units. Hence, sub-
sequent computation may require longer time in the pipeline
since many graph traversals are memory intensive.

Fig. 1. Vertex-centric memory model

Memory models have been scaled out to mitigate such
issues. But it could provide more additional complexity to
the system when increasing the number of servers to gain
larger in-memory storage, and would be a less viable option
in cost. Moreover, burst graph workloads would be more
decisive at the bottleneck. In contrast, there exists different
implementation choices such that it even becomes harder to
improve concurrency on top of traditional processors. It’s
noticed that general purpose instruction set is not tailor made
for the domain of graph applications [1].

In other hand, one could exploit on improving underlying
hardware architecture to improve the efficiency of off-the-
shelf in-memory graph computation. As a result, hardware
acceleration has attracted a lot of attention recently as an
alternative to improve the execution of operations in specific
data-structures1. Hardware accelerators could be designed as a
separate unit from CPU for memory intensive graph algorithms
in large scale processing [4]. In this paper, we focus on
designing such accelerator architectures. Accelerators have
been considered as specialized memory systems that do cater

1https://en.wikipedia.org/wiki/Hardware acceleration



Fig. 2. Gather-apply-scatter memory model

efficient on-chip memory usage as well as an inherent load
balancer to effectively manage burst graph work-loads.

We identify following objectives on designing an efficient
accelerator architecture for large scale graph processing;

– Scale system performance with memory bandwidth
– To reduce latency of moving data between compu-

tation units and memory
– To process iterative computation steps faster

– Utilize hardware resources more efficiently to save com-
putation energy

We would limit our study to hardware accelerators which
would focus on improving efficiency on cores and in-memory
computation in the domain of graph processing.

The rest of our study is structured as follows. In Section
II, we explain recent hardware accelerator models exploited
in graph domain. Section III discuss the key challenges found
at the implementation of such models. Also we will outline
a comprehensive comparison in the summary. Section IV
summarize the study and outline the future work.

II. HARDWARE ACCELERATOR MODELS

In this section, we review accelerator models over the
domain of FPGA, GPU and 3-D stacking, outlining design
decisions, data-structures, optimization strategies, evaluation
mechanisms and experimental results.

A. FPGA

Field Programmable Gate Arrays (FPGA) is a custom ac-
celerator model which provides the flexibility for application-
specific programmers to utilize a number of logical gates
and DRAM blocks in a FPGA board via a hardware domain
language2.

2https://en.wikipedia.org/wiki/Field-programmable gate array

1) FPGP [5]: FPGP is an on-chip parallel processor de-
signed on top of FPGA to cater vertex-centric graph compu-
tation. The approach is flexible on applying existing graph
algorithms without any change of their implementation to
utilize FPGA resources.

They improve the existing models of vertex-centric ap-
proaches to have an efficient partition mechanism that relies on
”interval-based” shards, where vertices are spread out across
”intervals” and edges are divided among sub-shards (Figure
3). The underlying graph partitioning brings higher bandwidth
due to effective utilization of data locality. Because many
graph algorithms are iterative, they maintain local computation
across vertices in a single interval (e.g. I1, I2, ..) per iteration
(e.g. i, i+ 1, ..).

Fig. 3. Interval-shard graph partition [5]

Further, it could handle large graph sizes due to less data
transfer within a single FPGA board. They utilize FPGA
on-chip cache called block-RAM(BRAM), and enhance their
architecture similar to SIMD processors. The system uses both
local and shared memory storage to improve irregular data
accesses (Figure 4). For iterative vertex-centric computation,
edges data is fetched from local storages and vertices are
manipulated by the controller to avoid off-chip accesses which
saves a significant portion of memory bandwidth.

They evaluate FPGP memory capacity varying with graph
sizes, and identify a bottleneck whenever the bandwidth of
local edge storage and shared vertex memory is not identical.
That concludes FPGP may not be competitive as large on-chip
CPU systems, and improvements in FPGA on-chip caches are
necessary to have an efficient accelerator model.

2) GraphGen [6]: GraphGen is another vertex-centric
memory accelerator model which stores vertices and edges
at off-chip DRAMs. Nevertheless, their goal is to provide



Fig. 4. FPGP Architecture [5]

a transparent design framework for developers to have a
”black-box” extension over different accelerator hardwares
(e.g. FPGA, GPUGPU).

They rely on an efficient mapping layer which translates
vertex-centric update to a set of custom instructions (i.e. vertex
program) that is capable to run on FPGA graph processors.
Further, it is extended to have a SIMD version to improve the
parallelism in a vertex program.

Fig. 5. GraphGen Architecture [6]

Figure 5 demonstrates the internals of GraphGen. FPGA
block-RAM is used to store a subset of vertices and edges,
and a local copy is kept at intermediary scratch-pads for
fast retrieval. CoRAM is an interface to graph data stored
at off-chip DRAM memory, and also acts as a controller to
share resources for computation tasks at graph processors. As
many FPGA accelerator models do, GraphGen also relies on
automatic partition strategies to fit data into local scratch-pads.
Then, the vertex program is executed for all vertices across the
loaded data.

GraphGen has been evaluated on execution capabilities over
different case-studies, but has not focused on the scalability
issues. Such that off-chip DRAM is not effectively utilized
over the increasing number of irregular memory accesses, and
fail to maintain the minimal memory bandwidth waste.

3) GraphOps [7]: GraphOps introduces a novel hardware
accelerator library for data-flow execution models targeted on
FPGAs. It’s beneficial not only for graph computation, but
others which rely on the same hardware for different types of

analytical forces. Also they present a modified data structure
to enhance spatial locality and vertex level parallelism.

Here’s the explanation of few building blocks of GraphOps
hardware design. These blocks are considered to be common
patterns found on implementing graph algorithms.

• Data handling blocks: Handle input data, reduction over
the vertex neighborhood, update property set

• Control blocks: Control logic for handling the data-flow
execution.

• Utility blocks: Extra logic for handling memory and host
systems.

Neighborhood property reduction is key to GraphOps oper-
ation, where reduction over neighborhood property data is
allowed.

Figure 6 shows the organization of GraphOps blocks to
construct PageRank algorithm.

Fig. 6. GraphOps Blocks Flow [7]

GraphOps improves the execution of new score generation
for vertices in PageRank algorithm, which is known to be the
section of bottleneck in the literature. To update the vertex
PageRank score, GraphOps enable the score reduction of
neighbors’ PageRank values.

GraphOps has been compared against an optimized version
of C++/OpenMP code that implements PageRank algorithm.
Observations include:

• Good cache locality effects at software version for small
graphs, but nothing on GraphOps since FPGA doesn’t
reuse cache data much.

• More memory channels in both versions increase the
performance

• Limitations of memory requests per neighbor over reduc-
tion of data.

GraphOps is also limited by FPGA bandwidth, but impor-
tantly perform better than it’s software counterpart. Also it
provides architectural building blocks to implement new graph
algorithms in a data-flow execution model.

B. 3D-stacking

3D-stacking technology has been emerged as a good candi-
date for in-memory graph processing due to it’s simplicity of
putting logic and memory to a single memory unit to reduce
memory bandwidth.



1) Tesseract [4]: Tesseract is a new hardware accelerator
architecture that enhances 3D-stacking technology to effec-
tively utilize available memory bandwidth and communication
across memory units. Further, it specializes memory prefetch-
ing techniques to align with graph data access patterns.

Tesseract uses an alternative to 3D-stacked DRAM called
Hybrid Memory Cube (HMC). HMC provides high bandwidth
proportional to available memory capacity.

Fig. 7. Tesseract Architecture [4]

Figure 7 shows such HMC organization which has 8 DRAM
layers, composed by 32 DRAM controller modules that are
connected via high-speed serial links. Host CPU processors
map Tesseract enabled HMC as a part of their own memory,
keeping Tesseract cores to use their local DRAMs.

As Figure 7.a demonstrates, host is responsible to distribute
the graph workload across HMC, enabling vertex-centric com-
putation to be performed at each controller level. Tesseract
cores use message passing to communicate with other cores.
Blocking and non-blocking message passing mechanisms are
exploited.

Tesseract utilizes high-memory bandwidth by adopting two
memory prefetching models, and uses internal prefetch buffer
to keep all prefetched data.

• List prefetching: To cater irregular and sequential vertex
access patterns at graph traversals, Tesseract uses stride
based prefetching technique employed with a prediction
table.

• Message-triggered prefetching: To cater random access
patterns at graph computation, Tesseract uses hint based
message triggered technique to prefetch data from non-
blocking message passing calls. Such that it argues many
random accesses are performed over edge-flows, enabling
remote vertices to be kept at different Tesseract cores.

Tesseract doesn’t utilize any software prefetching tech-
niques, since it relies heavily on distributed memory archi-
tecture via message passing.

In the evaluation, Tesseract validates their approach by
proving it’s effective usage over large internal memory band-
width and prefetching techniques to handle irregular data
access patterns. One interesting observation is the one-to-one
mapping of Tesseract core with computational units called
vaults. By their experimental results, it’s shown that it leads
to have an imbalanced load across HMC, which under-utilizes
the computation power and memory bandwidth. Also Tesseract
supports ideal scale-up when incresing the memory capacity,
but suffer from additional message-passing overhead when the
capacity is magnitude higher.

Tesseract has not focused on efficient strategies to dis-
tribute the workload across HMC in it’s architecture, but
has been evaluated by employing different graph partitioning
algorithms. Not surprisingly, the performance is improved due
to effective data locality.

C. Domain-specific

1) Graphicionado [1]: Graphicionado provides a domain-
specific accelerator framework that any graph applications
can be plugged into. Additionally they provide custom data-
types and structures that is well suitable for vertex-centric
programming that improves memory usage and parallelism.

They showcase the transparency of the system by extend-
ing the programmable pipeline of a software graph process-
ing framework (e.g. GraphMat), and hide the internal data
movement from the programmer. Process Edge, Reduce and
Apply are the basic chunks that can be used define custom
computations. Figure 8 shows the phases of processing and
applying graph computation on vertices.

Fig. 8. Graphicionado Processing [1]

Graphicionado Pipeline Terminology:
– Vertex Read: Reading vertices are supported in both

sequential and random manner.
– Edge Read: Given an edge, sequential and random read

of edge data is possible.
– Process Edge: Custom computation can be defined to

process on given edge.
– Atomic Update: The destination vertex is being fetched,

modified and updated. Also it preserves the atomicity of
the operation.

Following is the list of optimization done for basic Graphi-
cionado pipeline presented at Figure 8.

• Improving atomic update: Graphicionado adopts a large
on-chip embedded DRAM scratchpad memory to reduce
the edge data access latency and to preserve atomicity.

• Adopts prefetching: To avoid many off-chip memory ac-
cesses, cache-lines are prefetched to scratchpad memory
at sequential reads.

• Improvements for symmetric data-layout: Undirected net-
works are symmetric, such that Graphicionado improves
the usage of such data-layout by avoiding extra reads
when updating remote vertices.

• Dynamically sized vertex data: Large vertex properties
are split into constant sized flits, and process on the fly
whenever the complete data is available.

• Improve the parallelism by splitting the processing: With-
out replicating the pipeline to improve the parallelism,
the system split the processing element into two such as
source and destination vertex oriented units.



Lack of on-chip scratchpad memory does limit the size of
input graph to be processed. Graphicionado employs graph
slicing mechanisms. As an example, Figure 9 shows how
Graphicionado slice an input graph into two slices based on
the destination vertex id. Then the processing pipeline operates
on a slice per iteration.

Fig. 9. Graph slicing [1]

Fig. 10. Graph slicing for symmetric data layout[1]

Figure 11 visualizes a sample edge table which is used to
find the edges mapped to vertex ids (Figure 11.a). To fit large
edge table into the scratchpad memory, it’s compressed to store
a subset of edges.

Fig. 11. Edge Table [1]

Graphicionado has been evaluated for two classes of graph
algorithms, one that accesses all vertices in it’s iteration (e.g.
page-rank, collaborative-filtering) and other accesses only a
portion of active edges (e.g. breadth-first search, single source
shortest path). We believe that brings more impact to Graphi-
cionado evaluation, such that we could compare different data
flows to be optimized for same memory system.

The hardware accelerator model has been compared with
it’s counterpart to software processing framework (e.g. Graph-
Mat), and achieve a performance benefit. But the throughput
of the system is dependent on the algorithm, where it actually
depends on the memory access patterns. As an example
breadth-first like algorithms does not gain a higher throughput
as proportional to page-rank, since former depends on random
portion of graph data at each iteration. Also they have identi-
fied most of the energy is spent on embedded-DRAM and it’s
relatively low compared with processor energy consumption.
The set of optimization works well on scaling Graphicionado
for large graphs with comparatively low performance degra-
dation.

In other hand, Graphicionado tries to improve the existing
memory systems available at general purpose processors with-
out dependent on external embedded devices. Also we would
like to see some experimental results of the system compared
with accelerator models on top of embedded-DRAM.

2) Extended-GraphLab [8]: The authors of GraphLab, have
extended their software graph processing framework to have a
customizable hardware accelerator model. It’s been optimized
for both vertex-centric and GAS graph computation, and
parallelized over an asynchronous execution model.

The proposed accelerator architecture is shown at Figure 12.

Fig. 12. Accelerator Architecture [8]

• Runtime: Controller on managing the number of active
vertices based on the availability of system resources.

• Gather Unit: Fetch neighborhood data, dynamically pri-
oritizing the allocation of vertex tasks.

• Apply Unit: Perform vertex operation
• Scatter Unit: Spread the computed results back to neigh-

bors, and schedule future neighbors to avoid write-after-
read hazards.

• Active List Manager: Extract vertices to process from the
Active List and pass to Runtime.

• Sync Unit: Maintain the consistency of vertices to be pro-
cessed. Figure 13 demonstrates the micro-architecture of
sync unit. Sync unit preserves the sequential consistency
among the vertices by assigning an unique rank to them,
such that any vertex is ordered among it’s adjacent nodes.
Each vertex has id, rank, state and stalled requests. Using
such information, neighboring vertex data (NVD) needs
to ensure the ordering to avoid read-after-write hazards
in the system. Content Addressable Memory (CAM) is
used to identify the given vertex in the unit table.

The Compressed Sparse Row (CSR) structure has been used
to store the input graph in memory, and caches could be
connected to single or multiple DRAM via a memory interface.

Apart from improved performance, this study focuses on the
evaluation of power, energy and estimate area for each memory
block. DRAM power is significant in power consumption
compared with proposed accelerator units. This is due to many



Fig. 13. Micro-architecture of sync unit [8]

data-intensive tasks happened at vertex centric computation.
But overall, significant power efficiency have been achieved
by the factor of 65 over the CPU models.

3) Branch-avoiding models [9]: This study brings new
insights to domain specific graph accelerators by proposing
strategies to avoid branches when operating on graph algo-
rithms. Branch prediction plays a critical role over iterative
graph computation on top of single or many core architecture,
and a key factor for performance degrade when it’s not
effectively handled.

They address this problem by taking examples from well-
known graph algorithms; such as Shiloach-Vishkin connected
component (SV) and BFS algorithms [9]. It’s experimentally
shown that a significant degrade of performance incurs due
to branch mis-prediction at early iterations of SV. Their
optimization include a novel code transformation at assembly
level for SV which reduce branch mis-prediction.

Their analysis include 2-bit predictors to deal with sequen-
tial iterative process over vertices and edges. For an example,
we will briefly discuss the branch mis-prediction effect at SV
algorithm (Algorithm 2).

branch prediction at SV: SV proceeds by assigning vertex
ids as component ids for all vertices, and update them when
iterating through adjacent neighbors such that it iterates over
the conditional loop n+ 1 times in the main sequential body,
where n is the number of vertices. It’s shown theoretically, that
finding neighbors does incur total n number of branch misses
approximately, and it’s heavily dependent on the distribution
of input graph (e.g. scale-free). This study prevents such mis-
prediction by manually intervening the variable placement
from increasing the intermediary write-back states (Algorithm
3).

Their evaluation suggests a clear improvement of SV algo-
rithm against non-optimized approach over different proces-
sors (e.g. Intel, AMD). Also they have observed that branch
mis-prediction is correlated to time than memory traffic which
argues the much needed architectural support to accelerate
such algorithms.

D. GPU

1) TOTEM [10]: TOTEM harness a hybrid version of
CPU and GPU to leverage the concurrent processing of large
scale partitioned graphs. Such that CPU is being utilized
for fast sequential processing, while GPUs for bulk parallel
processing. TOTEM try to balance the task workload between
CPU and GPU to bring out the best in both worlds.

Also, this study focuses more on scale-free graphs, where
we have few high-degree nodes with a lot of low-degree nodes.
many low degree nodes are identical, where you can exploit
SIMD parallelism over GPU multi-threading. To achieve that,
TOTEM address two key challenges;

– Efficiently utilize GPU local memory and host-to-devide
transfer bandwidth

– Matching SIMD architectural with graph data depen-
dency model.

Figure 14 shows the distribution of graph data across system
and device memory systems, where α and β defines the ratio
of edges to be remained and crossed consequently.

It’s been theoretically evaluated that the performance is
influenced by the processing of slowest component of the
system, which is CPU relatively. The communication overhead
between two devices is negligible compared with the process-
ing force. The speedup is dominated by GPU work, hence it



Fig. 14. TOTEM Model [10]

can be measured inverse proportionally to the portion of edges
remained at CPU system.

TOTEM use Compressed Sparse Rows (CSR) structure to
represent a graph (Figure 15). Vertex ids are mapped with
assigned partition to fetch other neighbors ordered by local to
global. CSR is known to perform at low-cost on GPUs but
perform poorly for dynamic graph updates.

Fig. 15. Compressed Sparse Rows structure [10]

Also the system maintains two buffers per vertex that
are referenced to remote neighbor and self vertex which is
remote to another partition. The buffers are sorted to utilize
incorporated prefetching mechanisms. Further, TOTEM map
graph data with GPU memory via PCI-E bus to guarantee
high-bandwidth data transfer.

Further, the processing elements of GPU and CPU are
overlapped to keep balanced resource utilization. Since GPU
processes tasks faster than it’s counterpart CPU, the system
tries to mask it by overlapping with the CPU-GPU communi-
cation overhead.

The study tries to argue the importance of coupling CPU
and GPU in it’s hybrid approach. It’s been observed that
the performance advantage acquired when GPU is capable to
process any portion of the graph is comparatively low than
it’s proportion to the large graph. Also it’s possible to design
any generic graph algorithms on top of TOTEM data structure
that can scale well with the increse of processing elements.

One interesting observation is related to energy cost attached
to GPU processing, where the study alleviates the problem of
GPU peak power consumption by it’s capability of quickly
convergence into an idle state. Maintaining such state saves a
lot of energy in modern GPU enabled devices.

2) cuSTINGER [11]: cuSTINGER is a specialized data-
structure designed on top of NVIDIA’s CUDA enabled GPUs

that incorporates handling temporal updates to the input graphs
(STINGER as it’s general-purpose counterpart [12]). It accel-
erates static and streaming graph computation by efficiently
transferring the graph updates between memory and compu-
tational units via the proposed data structure.

STINGER keeps a subset of multiple edges in blocks
where edge data is maintained in a structure. cuSTINGER
specializes this array of edge structure to a block of arrays
where each block is considered as a structure. This would
improve data-locality in GPU where consecutive data accesses
are welcomed. To avoid underutilizing the GPU processor,
large edge blocks are considered to allocate for both static
and dynamic graphs by cuSTINGER memory manager.

cuSTINGER supports (un)wighted adjacency lists to store
graph information including any vertex or edge properties
via different modes. It can switch modes at initialization to
effectively manage limited GPU resources given the run time
parameters.

Edge, vertex insertion and deletion are possible at
cuSTINGER. The system separates former processes to get
advantage over GPU parallelization and memory management.
Graph updates are considered as events, and cuSTINGER
supports high velocity. The granularity of such events are up
the application to decide, but the study motivates to align
with underlying graph algorithm behavior. Graph updates are
considered to be expensive at cuSTINGER where it needs to
be copied from host to device, and also vertex might need
to update it’s adjacency list with a new one which causes
an incremental overhead. Also they identify a kernel launch
overhead at initialization that causes significant performance
overhead for small event batches.

While this data structure is being optimized to work with
GPUs, it has been experimented in modern CPUs too, and
produces exact results over triangle counting algorithm with
relatively low performance overhead.

3) GunRock [13]: GunRock is a high-level graph process-
ing library designed to harness data-centric abstraction on top
of GPUs, which they introduce using a new data structure
called frontier. Frontier is used as an programming interface
which several graph primitives can be applied into. Three such
primitives are introduced (Figure 16).

Fig. 16. GunRock data primitives [13]

• Advance is used to perform operations on multi-hop
neighbors. Also the primitive can be parallelized for
aggregation, update, fetch and new edge generation.

• Filter is used to find a subset of vertices or edges from
the current frontier based on a programmatic criteria.

• Compute performs an operation over the elements at
given frontier.



GPU Optimizations:

– Kernel Fusion: Integrate multiple operations asyn-
chronously into single GPU kernel. GunRock utilizes
Compressed Sparse Row (CSR) structure to treat vertex
or edge data as structure of arrays.

– Workload balance: To deal with imbalanced workloads
generated at Advance step, GunRock adopts Cooperative
Thread Array (CTA) mechanism to interact between
several GPU threads.

– Adaptive load-balancing strategy per topology to deal
with dynamically sized neighborhoods.

Instead of vertex centric computations, GunRock manip-
ulate frontiers. Bulk synchronization is supported for sim-
plicity and performance. GunRock improves the partitioning
mechanism by grouping equal number of edges together,
and assigning them to blocks. But they identify that the
grouping need be dynamically changed depending on the
topology, where two variations including fine-grained grouping
for smaller neighborhoods, and coarse-grained grouping for
relative larger neighborhood have been tried out.

GunRock has been compared against both CPU and GPU
based graph libraries for different classes of graph algorithms.
Apart from showing significant performance results over them,
GunRock has a low performance overhead when the graph is
dense, such that frontiers are regularly used. Such data orga-
nization also provides relatively slow computation, whenever
there are significant strides on pointer jumps.

Specially they provide flexibility to write new graph primi-
tives from the templates written over C-like device language.

GunRock has following limitations:

– Less support for dynamic graphs.
– Neighborhood aggregation, reduction need improvements
– Kernel fusion as not as better than hardwired GPU

implementations.
– Scalability issues due to GPU memory bandwidth.

4) MapGraph [14]: MapGraph is designed as a graph
programming framework to harness SIMD architecture in
GPUs. The goal is to cater GAS centric graph computation,
which makes it more unique among other libraries on vertex
centric computations.

It provides on-the-fly decisions for several optimization
strategies in the run-time for scatter and gather phases as apply
phase is known to be embarrassingly parallel.

• Dynamic scheduling: MapGraph assign workload to GPU
threads based on a variation of the vertex degree distri-
bution.

1) CTA-based scattering: Each neighbor is handled by
one CTA thread.

2) Scan-based scattering: A range of neighborhood is
calculated by prefix sum to form a compact scatter
vector.

3) Warp-based scattering: A variation of CTA-based
scattering, but a warp is being assigned per thread
to access adjacent neighbors.

CTA-based scattering is applied for large degree distri-
bution, followed by warp-based scattering to relatively
low degree vertices. For remaining vertices, scan-based
scattering is applied.

• Two-phase decomposition: Scattering is split into two
phases; scheduling and computation. This scheduling
groups edges by cooperating with multiple CTA threads,
and then the computation phase access the same number
of adjacent vertices and perform the operation.

MapGraph computation pipeline is illustrated at Figure 17.
The model checks whether the frontier size has satisfied the
given threshold value, such that one of optimization strategies
will be applied accordingly.

Fig. 17. MapGraph computation pipeline [14]

MapGraph introduces 3 primitives to implement any algo-
rithm on top of the proposed computation model, such as
VertexType, EdgeType and FrontierType. Also it utilizes the
structure of array to represent graph data, where data-level
parallelism is exploited at vertex level.

MapGraph experiments are conducted at NVIDIA Tesla
K20 cores and compared against Medusa - an GPU version
of popular GAS based software graph processing framework:
PowerGraph. It’s shown 42 times faster than naive manually
optimized BFS algorithm. Also the results include a compar-
ison with CPU-based GraphLab framework [14]. MapGraph
outputs a magnitude-lower execution time for several graph
algorithms, against a multi-threaded version of GraphLab.

III. DISCUSSION

In this section, we will discuss few challenges on im-
plementing hardware accelerator models. The discussion is
motivated by a recent graph performance benchmark [15]
which reveals some important observations about large-scale
graph computation performed on an IvyBridge server. The
computation yields comparatively low instruction throughput,
due to low memory level parallelism and memory latency in
modern CPUs. Further, they show that we can not hide the
low memory level parallelism by increasing the number of
threads. That will incur additional overheads including more
cache misses, synchronization issues etc. Also it would not



save any energy since there are many stalled cores awaiting
to be utilized over imbalance graph workload.

In general we discuss few pros. and cons. on implement-
ing such accelerator models on different hardware platform,
outlining key design patterns.

a) FPGA: We analyze that many FPGA systems access
off-board resources via PCI-e, thus suffer from it’s sup-
ported bandwidth. Large on-chip memory reduces the off-
board resource usage, hence could provide more parallelism.
Also scalability issues have not exploited on FPGA models,
that delays large-scale deployments. One could argue former
models do align with 3D-integration technology as FPGA
provides customizable hardware support.

b) 3D-stacking: Integration of computation inside mem-
ory has been studied over graph domain as a new direction.
Since graph includes many moving computation units, such
in-memory devices need to communicate efficiently through
a shared medium. Also, we argue whether cores are being
effectively utilized for in-memory computation over modern
day processors or GPUs, since heavy power consumption
could lead to an early saturation point sooner.

Prefetching mechanisms play a critical role in in-memory
3D-stacking technology. We believe exact prefetching is hard
to achieve, due to it’s dependency with the given graph
algorithm. As an example, all graph centrality algorithms
might not follow data-locality, where such as Eigenvector
centrality depends on the spectral properties of the whole
graph.

c) GPU: Large graphs need more space to store. Un-
doubtedly single GPU can not cater them all where they
need to be scaled up to a cluster of GPUs. But it incurs
additional complexity as communication between multiple
GPUs is identified to be difficult. Also the distribution and
partition of graph data across GPUs is non-trivial as data
usually have multiple dependencies among vertices. Several
studies suggest the key to success on GPU graph processing
is to overlap communication and computation as much as
possible [16]. Effective utilization of GPU resources is a hard
problem to tackle, neither under or over utilization should not
be permitted.

Due to the inherent complexity of modeling general graph
computation over GPUs, the domain has been incrementally
studied over several classes of algorithms [17], [18], [19].
Also, handling atomic updates over graph structures is not
properly studied in SIMD architecture. and the synchronization
patterns over multiple GPU cores would bring more traffic
towards host communications (e.g. kernel invocations).

d) Optimized data structures: Many studies exploit dif-
ferent data-structures to be optimized for hardware acceler-
ators. While compressed sparse row (CSR) is being more
popular among literature, some exploit coordinate lists and
ELLPACK too [7].

As Figure 15 shows, CSR includes a vertex, edge and
property arrays. This data organization does not bring benefit
always. As an example, PageRank algorithm require to fetch
neighbor property data simultaneously, which may overflow

from the scattered property requests. Such that locality needs
to be improved to cater specific algorithms. Also it’s important
to optimize the given data structure to support underlying
graph abstraction too.

e) Load balancing strategy: Apart from two graph ab-
stractions(i.e. vertex-centric, gather-apply-scatter) we have dis-
cussed, there do exist alternative models exploited in the
literature. Such abstractions clearly dominate the efficiency of
load balance strategies. Message-passing is such abstraction
model, where edges and vertices send messages to adjacent
nodes in order to distribute the computation. This approach
causes heavy workload imbalance on GPUs for many real
world graphs [13].

CPU strategies to handle the burst workload rely more on
task-parallelism, where execution of tasks performs parallel
but also in speculative manner. Ligra and Galois are such
models in the literature [20]. Load balancing in GPU brings
severe challenges too, including synchronization issues, lock-
ing overheads and dynamic data structure support.

f) Evaluation strategy: Many proposed accelerator mod-
els are not generic, in the sense they are optimized for specific
classes of graph algorithms. Following algorithms including
Single source shortest path (SSSP), Page-rank, Breadth first
search (BFS) ,Collaborative filtering (CF), Stochastic gradient
descent (SGD), Loopy belief propagation, Vertex Cover (VC),
Clustering coefficient (CC) etc. are usually tried out for
benchmark.

Since accelerator models try to be effective for irregular
access patterns on graphs, they consider a variety of such
patterns to demonstrate system behavior. Such that, algorithms
like PageRank and collaborative filtering do need all vertices to
be participated in a single iteration while others do require only
a subset. Also, we believe such classes of iterative nature do
cover the breadth of given approach. Overall, they haven been
evaluated against many software graph processing frameworks
(e.g GraphMat, GraphLab, Medusa), and achieve a significant
performance gain, specially over the effective utilization of
memory bandwidth.

In summary, Table I details a summary of comparison of
hardware accelerator models studied in this work.

IV. CONCLUSION

Graph based accelerator models have been risen to over-
come challenges found in general data-flow execution models.
Recent studies suggested on designing such acceleration, one
could require the support of underlying hardware models. In
this study, we outline few accelerator models over FPGA, 3D-
stacking and GPU. Also we explain some algorithmic opti-
mizations that could be exploited along with such models. Our
discussion ranges to two key graph abstractions (e.g. vertex
centric and GAS) over different classes of graph problems.
Further, we highlight useful design patterns and strategies
found on recent studies. Experimental results have been dis-
cussed with the special consideration to energy consumption.

We believe the recent attraction over hardware accelerator
models on large scale graph processing will open new research
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directions. Along with graph models, we will extend our study
to cover the data-flow execution models in the future. Such that
many software frameworks could be utilized over their rich
data semantics in hardware designs. Moreover, the integration
of different platforms could be extended to have advanced
hardware designs, and such exploration would enable more
design space for algorithm developers and programmers.

Also, such models could be influential on developing energy
saving chips. Specializing hardware design over application
specific knowledge would bring more opportunities to over-
come the power limitation.
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