
Object state recognition for learning manipulation tasks in robotics

Sameera Horawalavithana

Abstract— Object state recognition is an open problem which
is a special version of object detection problem. In the field of
computer vision, this problem has strong roots in object-object
interaction affordance learning of robots [6]. We model this
problem as a multi-class classification problem given a manually
annotated dataset representing the states of 24 cooking objects.
We present a modified ConvNet architecture with the bottom
layers trained using ImageNet examples. Our dataset is used
to train top layers in the ConvNet on classifying the correct
motion state of cooking objects. We achieve 74% accuracy of
predictions for unseen examples, where it generalizes well on a
relatively small training dataset of 5000 examples.

I. INTRODUCTION

Object detection and recognition techniques are widely
popular in multiple application domains. As an example,
pedestrian detection techniques are used in many surveillance
systems. Together with face recognition techniques, such
applications can be further improved for object verification
tasks. Hence, the recognition of objects plays an important
role in many computer vision problems.

In our work, we focus on a special version of object
recognition problem called object state recognition. Here,
we assume objects are functionally oriented, such that we
can observe different states of the same object in multiple
time intervals [3]. Importantly, we consider objects are
functionally related in a single or shared domains [5]. The
states are drawn from a finite space which is local to the
domain. Such that, different objects can belong into the same
state.

In a motivational example, we present a series of object
manipulation tasks performed by a chef robot. Given an
initial state of an object, chef robot’s task is to reach the
given end state, performing a sequential steps of operations.
Such steps are granular and usually conditioned on the
temporal state of the objects. As an example, given a whole
piece of carrot, the first step would be to peel. Then the
peeled carrot would be grated using a downward motion.
Finally, you might need to discard the smallest piece that
you can not shred longer. This operation includes carrot as
an object which needs to be detected first. Existing object
detection techniques or manual entry of such knowledge to
the robots can be considered. The steps are conditioned by
the states of whole, peeled, grated and other. chef robot
requires to identify the object in state to perform correct
steps (e.g., grate the peeled carrot). Any mis-identification
leads to incorrect order of steps, that may end with a wrong
final state. Sometimes, such mistakes can not be recovered
(e.g. if whole carrot is grated before peeled.)

In general, cooking objects are functionally related such
that you apply a same set of functions to reach a shared

set of states (e.g., whole, diced, grated etc.). Such functions
could be in different order based on the associated cooking
objects (e.g., peel both carrot and potato, and slice potato
before grating carrot). As chef robot learn functions based
on instructional videos, it’s important to provide the states
of the objects as the knowledge base. We use Convolutional
Neural Networks (CNN) architecture for such learning.

The remainder of this paper is organized as follows.
In Section II, we introduce our dataset, while we present
CNN architecture in Section III. We present our results in
Section IV and discuss our contributions in Section V.

II. DATA AND PREPROCESSING

The dataset include 5100 image examples which has 24
cooking objects in 7 states (i.e., whole, diced, sliced, grated,
julienne, juiced, creamy). We manually annotate objects in
a participation of 20 human experts. Each object is assigned
only one state. We select the most discriminative state for
images that have multiple states, and categorize images that
have multiple objects in a separate class of interest. Table I
presents the distribution of the dataset over all possible states
that we consider, while a sample image of a cooking object
is presented in Figure 1.

state number of examples
diced 605

jullienne 408
sliced 1103
grated 700
whole 1117
juiced 546

creamy paste 638

TABLE I: Basic statistic about the dataset

We randomly select 20% of examples for validation data
similar to the distribution of training data, and have a separate
set for testing. Both training and validation data are shuffled
randomly. We apply several image pre-processing techniques
to get a set of augmented images for training, validation and
testing. Such pre-processing steps include:

• image rescale: transform pixel values to a probability in
RGB scale.

• feature centralization: normalize features into a Gaus-
sian distribution with mean 0.

• feature normalization: divide pixel densities by the
standard deviation of feature values.

• feature shift: horizontal and vertical shift of feature
values randomly



Fig. 1: Sample object: Onion with the state whole

• histogram equalization: adjust contrast of the images
separately for RGB color values1.

• zoom and shear images
• random rotation of images
All images are resized to 512×512 by keeping the original

aspect ratio.

III. METHODOLOGY

Our method follows convolutional networks (ConvNet):
deep learning models that achieved a great success in object
recognition tasks. Recall that our objective is to identify
correct states in cooking objects. We experiment with VGG
model [4] which introduced 16-19 depth of weight layers
in ConvNet (Section III-A). We improve VGG model by
adding an extra convolutional layer followed by three fully
connected layers with different number of channels (Sec-
tion III-B). Further, we describe the trial-and-error process
on improving prediction results (Section III-C)

A. VGG

We use the 16-layer VGG ConvNet model which is used
to classify images in recent ImageNet competition. VGG
includes a stack of convolutional layers followed by three
fully connected layers at the end. We only use bottom layers
of VGG, excluding fully connected layers such that we can
feed arbitrary sizes of images. VGG uses 3 × 3 filters as
receptive fields, and the number of filters vary over 64 to
512. Maxpooling has been used as a method to sub-sample
in 5 convolutional blocks.

B. Our configuration

Figure 2 presents a summarized version of the complete
ConvNet model that we used. For training, the input to our
ConvNet is a set of 512×512 RGB images. Images are pre-
processed prior to training as presented in Section II. The
initial model presents the set of frozen VGG layers with the
weights trained from ImageNet.

1https://en.wikipedia.org/wiki/Histogram equalization

1) Convolutional Layers: The task of convolutional layer
is to extract features for learning hidden patterns of images.
Since the original images are passed to VGG model, its’
convolutional layers learn most direct features from the
images. Figures 3a to 3h visualize the VGG’s first block
of convolutional layer with the filtered images of two con-
volutional layers that have 64 filters each. Note that we only
present the visual space of first four filters. They mostly learn
the direct features of direction and color of the images, as
the original shape preserved in the filtered images.

More convolutional steps will only break down into more
complicated features using the knowledge from previous
layers. As an example, Figure 4 visualizes the filtered images
at the top convolutional layers close to the output layer.
More complicated textures are presented by Figures 4i to
4p which is the extra convolutional block after VGG layers.
It’s clear that these textures are more complicated than the
filtered images output in the convolutional layers in VGG
block 05 (Figures 4a to 4h). These complicated feature maps
represent grid and spot textures which capture more hidden
information of a larger spatial context.

After few steps of experiments, we limit to the addition
of single convolutional layer after initial VGG model. We
experimented with two to three convolutional layers with
a decreasing magnitude of filters, but the significance of
accuracy remains in a smaller range.

Similar to VGG, we also use 3×3 filters as receptive fields
with the padding outlines the output in same length compared
with the input. We set the number of filters to 512 in our
convolutional layer, which proves to be the optimal number
of filters. This decision is also motivated to have a number
of filters similar to the final convolutional layer in VGG.
All activation layers immediately followed by convolutional
layers are equipped with ReLU units.

2) Pooling Layers: Pooling layers are used to subsample
feature maps to have better spatial invariance. We apply max
pool operation with a 2×2 pool size, and a similar size of
strides. Such that, image would be reduced half by size in
each dimensions by taking the maximum value of each pool.

3) Normalization Layers: We only apply batch normal-
ization after each convolutional and fully connected layers.
The goal is to have a normal distribution over the activation
results of previous layers, since layers are susceptible to
the changes of input of previous layers. Batch normalization
avoid this problem of internal covariate shift [2].

4) Dropout Layers: We note the invariance of relatively
small amount of training data, and the large number of
parameters to train. The probability of dropout individual
neurons is set to 0.5. We reduce the number of activation
by half with this way of regularization. A dropout has been
applied in the convolutional block. The main objective is to
reduce the number of parameters and avoid over-fitting.

We try with the addition of dropout units after fully
connected layers with relatively larger in size. Later, we
avoid dropout and reduce the size of neurons in the fully
connected layers. Our concern was the random drop of
hidden units without an optimal way of selecting which to



InputLayer Model Conv2D BatchNormalization Activation MaxPooling2D Dropout Dense BatchNormalization Dense BatchNormalization Dense BatchNormalization Flatten Dense

Fig. 2: CNN Architecture

(a) block1 conv1 1 (b) block1 conv1 2 (c) block1 conv1 3 (d) block1 conv1 4

(e) block1 conv2 1 (f) block1 conv2 2 (g) block1 conv2 3 (h) block1 conv2 4

(i) block1 pool 1 (j) block1 pool 2 (k) block1 pool 3 (l) block1 pool 4

Fig. 3: Visualization of VGG block 01 that includes two convolutional layers each with 64 filters plus a max pool layer

(a) block5 1 (b) block5 2 (c) block5 3 (d) block5 4 (e) block5 5 (f) block5 6 (g) block5 7 (h) block5 8

(i) conv 1 (j) conv 2 (k) conv 3 (l) conv 4 (m) conv 5 (n) conv 6 (o) conv 7 (p) conv 8

Fig. 4: Visualization of VGG block 05 and extra convolutional layer followed by batch normalization, pooling and dropout

drop or not. We also observe a slower rate of converging
when more dropouts in placed, but each epoch only took
relatively less time to complete.

5) Dense Layers: Convolutional layers are the main sup-
pliers of high-level features. Fully connected (i.e., Dense)
layers combine different features to an actual neural network.
The size and number of dense layers are always major



concerns in our experiments.
All together with VGG model, we have 14 convolutional

layers (13 VGG layers plus one extra) to learn the sort
of features for better predictions. First, we don’t want to
increase the number of parameters, but in the same time
we want to fit the convolutional features to an actual fully
connected network. As presented in Table II, we use three
dense layers close to the output layer of 7 classes. First dense
layer has 128 neurons, and 64 and 16 to follow in the next
two layers. In the complete model, we only account for 14%
of parameters to train. Dense layers equipped with 3% out of
trainable parameters. The decision of having three connected
layers with the given set of sizes is taken after a process of
trial-and-error.

We achieve a greater detail of success with softmax acti-
vation function than ReLU in dense layers. Fully connected
layer represents a linear relationships of convolutional fea-
tures. With the softmax, it could be able to learn non-linear
relationships in a multi-classification problem. Together with
a stack of three dense layers, softmax found to be better with
the accuracy of predictions.

Layer (type) Output Shape Parameters
InputLayer (None, 512, 512, 3) 0

vgg16 (Model) (None, 16, 16, 512) 14714688
Conv2D (None, 16, 16, 512) 2359808

BatchNormalization (None, 16, 16, 512) 2048
Activation (None, 16, 16, 512) 0

MaxPooling2D (None, 8, 8, 512) 0
Dropout (None, 8, 8, 512) 0
Dense (None, 8, 8, 128) 65664

BatchNormalization (None, 8, 8, 128) 512
Dense (None, 8, 8, 64) 8256

BatchNormalization (None, 8, 8, 64) 256
Dense (None, 8, 8, 16) 1040

BatchNormalization (None, 8, 8, 16) 64
Flatten (None, 1024) 0
Dense (None, 7) 7175

TABLE II: Model summary: Trainable parameters
= 2,443,383(14%), Non-trainable parameters =
14,716,128(86%)

C. Architecture Choices

1) Loss function: Since we have a multi-classification
problem, where each image only belongs to single class,
we use multinomial cross-entropy loss as the optimization
objective. This decision is biased only to deal with the classes
in categorical format.

2) Optimizer: We settle with stochastic gradient descent
(SGD) method as our optimization algorithm with the param-
eters of learning rate and momentum. In the first place, SGD
is selected for faster and stable convergence and to avoid the
cost of weight update over back propagation with a set of
small batches. We set the size of batches to 32 examples
after few sets of experiments. Learning rate is set to 0.0001
with a momentum value of 0.85. Momentum was used to
walk towards the global optima, but not to stuck in a local
minima. We keep the momentum value relatively larger to

have faster convergence, while very small learning rate to
have small gradient updates.

We also experiment with Adam, though we achieve rela-
tively less training loss, this method has not been generalized
well for validation data. We’re also motivated by a re-
cent comparison of SGD over adaptive optimizers including
Adams [7].

3) Regularization: In another attempt to solve the prob-
lem of over-fitting, we apply L2 regularization in both
convolutional and dense layers. We set the regularization
term to 0.0001. We select L2 over L1 regularization since
we have non-sparse matrices to represent images.

We stop the training once we don’t achieve any improve-
ment of the validation loss for 20 epochs. This method is
also a form of regularization.

IV. EVALUATION AND RESULTS

We use Keras framework for the implementation of pro-
posed ConvNet. As presented in Section III, VGG16 was
used as the initial pre-trained model. Dataset is divided
into training and validation sets in the first place. Images
are rescaled into a fixed size during training, but keep the
original aspect ratio, which then follow few pre-processing
steps (Section II). We keep the VGG weights frozen, which
remains 14% weights to train in our model. The whole model
was trained over 100 epochs with the architecture choices
presented in Section III-C.

A. Accuracy

Figures 5a and 5b present the performance of trained
ConvNet. We report metrics related to both training and
validation datasets. Training accuracy reaches 90% after 100
epochs in placed. We had prior configurations where training
accuracy reaches 100% rapidly, but that clearly shows over-
fitting due to the poor performance over validation data.

Somebody could argue that the model could have more
capacity to learn, since it doesn’t reach the optimal loss
value. But we’re interested on the stable rate of learning new
examples than achieved loss value after 100 epochs. The loss
curve in training data reflects the model is learning better.
The width of the curve represent the batch size, which might
be too narrowed. But this is due to the selection of batch size.

Validation metrics present the goodness of model pre-
dictions over unseen data. Validation accuracy was better
than training accuracy in the initial epochs. But we note
the sudden decline of the model performance for unseen
data after 20 epochs. The rate of learning new examples
was superior than the rate of predicting unseen examples.
But importantly, we observed a smaller gap between curves,
which reflects less over-fitting.

In another note, early stopping was active in training, but
didn’t trigger the model to stop since the model is learning
continuously.

Figure 6 presents the confusion matrix for predicted la-
bels in validation data. The model seems to achieve better
prediction results in some of the classes. As an example,
the accuracy of predictions is relatively good for sliced and



0 20 40 60 80
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

train_loss
validation_loss

(a) Loss

0 20 40 60 80
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

train_accuracy
validation_accuracy

(b) Accuracy

Fig. 5: Loss and accuracy

creamy_paste diced grated juiced jullienne sliced whole

cr
ea

m
y_

pa
st

e
di

ce
d

gr
at

ed
ju

ice
d

ju
llie

nn
e

sli
ce

d
wh

ol
e

21 11 18 13 8 34 21

15 15 17 9 15 28 21

20 12 23 11 6 32 35

12 14 12 10 10 25 25

6 11 12 9 7 20 15

23 38 25 19 19 60 35

36 31 29 27 10 46 40 10

20

30

40

50

60

Fig. 6: Confusion Matrix for validation data

whole images, two classes that have relatively large fraction
of training examples. However, the images with the state of
whole have been predicted as many other classes. We will
report the confusion matrix for test data as they release.

Here, we list our experience during the training and
validation process.

1) The penalty of image augmentation: In our first try,
we do all sort of image pre-processing including histogram
equalization as presented in Section II. More recent experi-
ments only consider feature centralization and normalization,
which provides better accuracy with the softmax activation
function applied over dense layers.

We resize the images to 128× 128 in the initial set of
experiments (i.e, crop the center), but gain higher success
when the images are in the resolution of 512×512.

2) ConvNet Layers: Our results are better generalized
with the given architecture. However we note that the ac-

curacy is more dependent on the number of weights than
the depth of layers. Specially, the size of dense layers effect
the accuracy. But the number of extra convolutional layers
effects less.

V. DISCUSSION

In general ConvNet integrate two-fold methods of feature
extraction and multi-class classification. Traditional feature
extraction methods are unsupervised, such that it’s hard to
map feature spaces with the distinction of target classes.
ConvNet learns features automatically in a supervised man-
ner. Such that, feature spaces served as better clients to
distinguish target classes.

VGG16 serves as the backbone in the proposed Con-
vNet model, which accounts 86% weight parameters. Since
VGG16 was trained on a larger collection of images in
ImageNet, we keep already trained weights frozen in the
bottom convolutional layers. ImageNet is supposed to have
many examples of cooking objects, but we don’t exactly
know the extent of variance exist in object states. Such
that, VGG would give a set of under-estimated weights that
trained on many other image classes out of our interest. This
might be an issue when a model is not properly localized to
the problem. But in the same time, ConvNet would perform
well with a larger amount of training data. Since VGG uses
small filters to stack together a set of convolutional layers,
the extracted features would become more complicated and
representative. But there are many hyper-parameters that
need to be in an optimal combination for better predictions
in a ConvNet architecture which are selected with a lot of
trial-and-error experiments.

Our major concerns: can we generalize the concepts of
object state recognition through the proposed architecture?.
This is a major battle we would like to solve. But there
are several limitations. Object states are causally related
with human motions, which makes object state recognition
in a widely open space of problems due to the significant



diversity of application domains. Such that we require a
millions of examples to have better conclusions, specially
with ConvNets. ConvNet could memorize training examples
directly than embedded patterns [1]. To avoid this, we need a
similar distribution of test data with a variety of object states
to represent human motions.

REFERENCES

[1] Hossein Hosseini, Baicen Xiao, Mayoore Jaiswal, and Radha Pooven-
dran. On the limitation of convolutional neural networks in recognizing
negative images. In Machine Learning and Applications (ICMLA), 2017
16th IEEE International Conference on, pages 352–358. IEEE, 2017.

[2] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456, 2015.

[3] David Paulius, Yongqiang Huang, Roger Milton, William D Buchanan,
Jeanine Sam, and Yu Sun. Functional object-oriented network for
manipulation learning. In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 2655–2662. IEEE, 2016.

[4] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[5] Yu Sun and Yun Lin. Modeling paired objects and their interaction. In
New Development in Robot Vision, pages 73–87. Springer, 2015.

[6] Yu Sun, Shaogang Ren, and Yun Lin. Object–object interaction
affordance learning. Robotics and Autonomous Systems, 62(4):487–
496, 2014.

[7] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and
Benjamin Recht. The marginal value of adaptive gradient methods
in machine learning. In Advances in Neural Information Processing
Systems, pages 4151–4161, 2017.


