
Vold Daemon Exploit 
In this exploit, we explore the vulnerability inside VOLD daemon process available in Android 
2.3.3. VOLD is the storage device manager who’s responsible on managing storage. It has the 
capability to interact with the kernel directly through Netlink bus with root privileges.


Think Like an Attacker 
Normally, the input for vold daemon process is from kernel. But luckily for us, it doesn’t verify 
whether the input is actually originated from kernel space. We try to replace the input that vold 
receives with an malicious one via net link interface. Through malicious input, we control the 
instruction flow, and ask the vold to place our instruction (“what”) in a proper place (“where”). 
Once we have all facts for the exploit, the objective is to get into a root shell. In fact, this is 
similar to the where-what memory exploits earlier.


Any Bug? In the handlePartitionAdded method, we have few programming mistakes that we 
would utilize for the exploit. We found that it doesn’t check whether the value passed as an 
argument for the part_num is negative or not. Thus, we could place any arbitrary values as 
arguments to redirect the index of the mPartMinors array to overwrite any memory location.


The ingredients for the exploit? Our goal is to use the existing system calls for our exploit. First, 
we need to know the memory location that we overwrite. ‘atoi' is being used several times in 
the handlePartitionAdded method, turns to be a good candidate. But we need to know the 
associated GOT address of ‘atoi' to be replaced with a value that we want utilize. But how to 
know the GOT address? Easy, we use Android ndk tool to analyze the object dump of vold 
process to get the offset of ‘atoi’. 


Second, we need to trace back to the GOT address through the instruction of the method, 
since we can not directly jump to the GOT address, and overwrite. Now, we utilize the bug we 
explored earlier. Through the array of mPartMinors, we can go anywhere by modifying the 
index. We put a negative value as an index, and jump back to GOT address. The pointer 
address of the array mPartMinors is given in the assignment. We just need to calculate the 
difference between pointer and GOT addresses, and divide it by 4 to redirect the array index to 
the place where we want to be.


Third, we need to decide the value that we would use to overwrite GOT address. Since our 
goal is to get into a root shell, simply, we can overwrite it with the address of ‘system’ function. 
Once it was overwritten with the address of system function, ‘atoi' would behave like ‘system’. 
Then, any argument which would be passed to ‘atoi', would be arguments to system function. 
Job done !!


Not yet, what is the argument you want to pass for the system function? We write a backdoor 
program that copy the root shell to the local folder, and get the root privileges with the set uid 
bit. Now, we ask the system to execute this backdoor program, which would bring up a shell 
that can be executable.


In the programming part, we just need to craft two strings with our malicious parameters that 
we will pass through net link bus. In the first string, we will have the ‘system’ address and 
negative offset, once ‘atoi' is overwritten, we pass the second string with the parameter of the 
command that we want to execute with ‘system’ function.





