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Abstract

A social network evolves over time through the creation or deletion of ties among
a set of actors [22].The volatile nature of social ties provides a strong platform to
identify the dynamic community structure. This change of structural patterns

can be well represented by the existence of motifs (or graphlets).

Further,

they can be enriched with the temporal information of social ties to define the
recurrent subgraphs of interest. This would yield important insights about the
correlation between patterns of ties in a social network [12]. Major contribution
of our study is the analysis of dynamicity over the social ties via motifs.
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1 Introduction

Modeling social interactions by temporal properties has been attracted as a rich
characterization of social ties. Temporal patterns provide key insights to identify
inherent properties of social ties, since, they are usually packaged with the
tightly coupled duo: network structure and dynamic. Hence, social networks can
be viewed as highly complex dynamic entities which facilitate the instantaneous
nature of human activity patterns [12].

When characterizing temporal properties of a social network, most of the
studies consider persistent models by aggregating temporal information into an
aggregated snapshot (LSN 1 - Figure 1) [19, 1]. Hence, these techniques fail to
capture most of state changes in a dynamic network. Thus they lose rich corpus
of information in the go, which leads to bring insufficient insights about the
network [14]. Thus, it’s required to analyze the network behavior of nodes in
their structural positions and participation to explore dynamicity of an evolving
network [22].
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Figure 1: Static and dynamic topologies of an evolving longitudinal social net-
work (LSN) [22]

A network which spans over multiple short time intervals can be well studied
by modeling it as a dynamic topology (LSN 2 - Figure 1). Many dynamic struc-
tural properties emerge over the evolving network, which can be understood by
studying position and participation dynamicity measures [22]. In our study, we
focus on the position dynamicity, which models the change of node’s structural
positions in the network, specifically via motifs (or graphlets).

The notion of motif is well established in static networks, which is defined
as the small induced subgraph patterns of the original structure of the under-
lying network [2]. Further, it has been extended to capture brokerage positions
(i.e. orbits) in subgraph patterns, which gives a detailed view of the network
structure local to a node specification [13].

Motivation: ”For static networks, a triangle is a triangle, and such sub-
graphs can readily be counted. For temporal networks, we first have to define
what a triangle is; here, we have defined temporal subgraphs based on the time
adjacency of events sharing nodes.” [8]

As an example, without the notion of temporal motifs, we would fail to de-
scribe a triangle relation of three individuals in the context of temporal causal-
ity, where we can not describe the relationship of Alice with Carl, is due to
the common friend Bob or by chance with no former communications. Also,



the mesoscale structure of temporal network can be well represented by motifs
which describe the topological change over time.

2 Temporal Motifs

In our study, we are based on a recent specification of temporal motifs, that
defines the subgraph patterns which consists of all edges observed within a §
time-units in a dynamic network [14].

Definition 2.1 (Temporal graph). Let V be a set of nodes, such that Vv € V,
and F be a set of temporal edges, such that V(u;,v;,t;) € E , where Yov; are
instances of v € V, and t; € R depicts the time-stamp of edge formation. Also
t; could be extended to d; = tﬁ — t; to define the duration of an active edge,
where té define the dissolve time of an edge w;,v;. Thus, (V,E) € G4 defines
a temporal graph within a observation time window d > Vd;,i = 1,...m, such
that m is the number of edges.
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Figure 2: Sample Temporal Graph (G)

Based on the definition 2.1, temporal graph would be a multi-graph which
consists of many temporal edges between any two nodes u,v € V, and such
edges are strictly ordered based on the timestamp ¢; attached with an edge
(Figure 2). Note that we can induce the underlying static graph, by avoiding
the temporal property.

Definition 2.2 (6—temporal motifs [14]). A k-node, g-edge, temporal motif
is a sequence of ¢ edges, M = (u1,v1,t1), ..., (g, vy, tq) that are time-ordered
within a duration, i.e. ¢ < ta... <ty and § > ¢4 — ¢1 , such that the induced
static graph from the edges is connected and has k nodes.
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Figure 4: Temporal motif structures k = 2,3; ¢ = 3;

Based on the definition 2.2, temporal motif defines a pattern of subgraph
(i.e. multi-graph), which consists of ordered edges on timestamps (Figure 4). In
the sense, any temporal graph in a observation window could be a instance of a
given temporal motif structure, as it follows the k — node, ¢ — edge in the given
order of edge pattern. While the definition 2.2 is defined for directed temporal
graph with timestamped edges, it can be specialized for other variations too
(e.g. undirected, signed network).

In general, Paranjape et al. [14] explain that any time-ordered sequence
S = (w1,y1,11), -, (T4, Yq, t;) of ¢ unique edges is an instance of the motif M =
(u1,v1,11), -y (g, Vg, tg) i,



e Jf bijective function on the vertices such that f(z;) = u; and f(y;) =
v, =1,...,q, and

e the edges all occur within the time, i.e., § > ¢ — 1}
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Figure 5: Sample Instances of Motif Structure (M C G), § = 5s

Figure 5 demonstrates the instances of  —temporal motifs (k = 3,¢ =3, =
5) for the sample graph G as shown in Figure 2.

3 Measures

3.1 Motif Count

Motif degree count defines the frequency of appearance of the given motif in
a network. The interesting observation would be to measure the frequency of
temporal motifs in different time scales. Many insights could be demonstrated
about the formation of motifs, which are discretized along the lifespan of the
observed pattern.

As an example, the motif M as given in Figure 3, can be seen 5 times within
a 6 = 5 observation window in the sample temporal graph (Figure 5). Further,
we used snap! package to count the number of several temporal motifs in our
sample network. Results are demonstrated at Table 1 and 2 for § = 5 & 10
respectively for the sample network.

Lhttp://snap.stanford.edu/temporal-motifs/index.html



M171:2 M172:0 M173:2 M174:1 M1,5=0 M1’6:2
M271 =4 M272 =0 M273 =1 M274 =0 M2,5 =1 MQ,G =0
M371 =0 Mg’g =0 Mg’g =0 M3,4 =0 M3,5 =0 M3’6 =1
M471 =3 M472 =0 M473 =1 M474 =0 M4,5 =0 M4,6 =5
M5’1 = 0 M5’2 == 0 M5’3 == 0 M5’4 == 0 M5,5 == 0 M5’6 = 0
Me1 =0 | Mgo=0 | Mgs=2 | Mgy=2 | Mgs=1 | Mgg =2

Table 1: Counts of instances of temporal motifs with k = 2,3;J = 5s. Counts in
the i'" row and j*" column is the number of instances of motif M; ; (see Figure.
4);

M171 =5 MLQ =0 M1’3:4 M1,4:3 M1,5 =0 M1,6 =3
My1 =9 | Mao=0| Mas=1| Mpyu=0| Moys=1| Mag=0
M3’1 =0 M3’2 =0 M3’3 =0 M3,4 =2 M3,5 =0 Mg)ﬁ =2
M471 =7 M472 =0 M473 =3 M4,4 =0 M475 =1 M476 =9
Ms1 =0 | Mso=0| Ms3=0| Ms4s=0| Ms5=0| Ms=0
Mﬁ)l =1 M672 =0 M673 =38 M6,4 =5 M6,5 =3 M6,6 =9

Table 2: Counts of instances of temporal motifs with k£ = 2,3;6 = 10s. Counts
in the " row and j'* column is the number of instances of motif M; ; (see
Figure. 4);

3.2 Higher order organization

Motifs provide rich extensions for analyzing higher order organization of a net-
work. Instead of edges, we adopt a motif based clustering to present higher
order connectivity patterns [2].
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Figure 6: Analyzing modules from motifs [2]

We discuss about the vast space of possible motif instances that could be
generated from our definition 2.2. As higher order organization modules are
dependent on the small subgraph patterns, such space of motifs could lead us to
have more fine grained optimal modules or community structures in the network
(Figure 6).

Benson et. al [2] introduce a generalized framework for clustering based on
a new metric of motif conductance.



Definition 3.1 (Motif conductance metric [2]). Given a motif instance M, find
a set of nodes S that minimizes

cutpr (S, S)

ou(8) = min[voly (S), vol (S5)]

(1)

where S = V/ S, cutp (S, S) is the number of instances of motif M with at least
one node in S, and one in S, and volys(S) is the number of nodes in instances
of M that reside in S.

Hence, this grouping needs to minimize the given motif cuts, while having
most of the edge points in the clusters (Figure 7).

Motif: Network: S

A

Figure 7: Clustering based on motif conductance metric [2]

We use snap-higher-order? python package to find clusters of low motif con-
ductance, which is implemented based on motif spectral clustering methods.
Snap is only capable on static graphs currently, therefore we induce static graphs
from all the temporal versions to study the near optimal higher order organiza-
tion.

Figure 8 lists the motif types and naming conventions supported by snap?
currently. We use them for our analysis on higher order structures.

2http:/ /snap.stanford.edu/higher-order
3http://snap.stanford.edu/higher-order/code.html



Motif naming conventions

M1 L\ M8 ./'\. bifan
M2 /;\ M9 ./'\. edge | _+_.
M3 [ﬁ\ M10 ./\.

M4 .{‘;\. M11 ./'\.

M5 /\ M12 ./'\.

M6 Q M13 ./\.

Figure 8: (Static) Motif naming conventions for higher order organization

As an example, given the motif M7, the network shown at Figure 7 can be
partition into two sets, S = {1,2,3,4,5} and S = {6,7,8,9,10} which has the
lowest motif conductance value 0.125 (Table 3).

Motif | Largest CC size | Cluster size | Motif conductance in largest CC | Eigenvalue
M7 10 5 0.125000 0.115140
M8 10 5 0.285714 0.279742
M9 8 4 0.750000 0.855662
M10 6 3 0.250000 0.316987
Mi1 4 2 0.666667 1.000000
M12 5 2 0.600000 0.903144

Table 3: Higher-order organization

3.3 Brokerage positions

We would like to extend our focus to analyze brokerage positions in temporal
motifs. Such positions were established in the context of static motifs, as known
as orbits [13].

Definition 3.2 (Orbits [23]). Two nodes within a network are said to belong to
the same automorphism orbit (or automorphic equivalence class) if there exists
a relabeling of nodes in the graph that exchanges the two nodes while preserving
the graphs adjacency structure.
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Figure 9: All undirected motifs (or graphlets) Gy, ..Gag; k = 2, ..5, and respective
orbits 0, ..72 [15]

Figure 9 visualizes all the possibilities of motifs in the given space of k = 1,..5
nodes, and the respective orbits in a static context.

Temporal Orbits When defining orbits in the context of temporal motifs,
we need to study the problem of multi-graph automorphism. In the meanwhile,
[4] shed light on finding the automorphism groups of multigraphs to the case
of irreducible multigraphs, that is to multigraphs having no twin vertices. We
would like to follow the automorphism groups as proposed by the definition 3.3
in our study.

Definition 3.3 (Multigraph automorphism [4]). Let G be a multigraph. For
any u,v € V', the multiplicity u(u,v) is the number of edges (possibly 0) having
u and v as endpoints. An automorphism of G is a one-to-one mapping g :
V — V such that p(g(u),g(v)) = p(u,v) for any u,v € V. The automorphisms
of G define the automorphism group Aut(G) of G.

Since, temporal motifs are strictly defined by the order of edge patterns, we
guess that a vast space of temporal orbits could be explored, given the possibility
of generating ¢! (’:’;) ordered length of ¢ sequences of edge patterns in a temporal
graph.

3.4 Motif Degree

In the static context, motif degree of a node reflects the number of motifs that
it participates at a given orbit. Thus, we could have a vector of motif degree
which is local to a node in the given range of k (e.g. k > 1). Hence, motif
degree vector is a generalization of degree (i.e. when k& = 2), which details
about the local view of the network structure.



Temporal Motif Degree The definition of temporal motif degree can be
parameterized by ¢, and would provide a dynamic insight about the change in
temporal orbits in a evolving network.

4 Analysis

We analyze several temporal and static datasets (Table 4 ) by observing the
time it takes for motifs to form. In general, we group the frequency of motifs
into time bins of [60(: — 1), 60¢] seconds, which represent the difference of motif
counts with 6 = 607 seconds minus the count with ¢ = 60(¢ — 1) seconds.

Dataset No. of nodes | No. of static edges | No. of temporal edges | Timespan (Days)

StackOverflow (Answers to Questions) 16,266,395 2,464,606 17,823,525 2774
StackOverflow (Comments to Answers) 1,646,338 11,370,342 25,405,374 2774
Wiki-Talk 1,140,149 3,309,592 7,833,140 2320
Bitcoin (Active users) 1288 - 7255 600
CollegeMsg 1,899 59,835 20,296 193

Amazon 334,863 925,872 - -

DBLP 317,080 1,049,866 - -

Table 4: Basic statistics on datasets, Note that datasets without temporal edges
are static, otherwise we induce static version as required.

4.1 Stack-Overflow

Stack-overflow is an online portal where registered users can interact with others,
by posting questions, answering them and commenting on both questions and
answers. We consider several datasets from the recent stack-overflow dump for
our analysis [9].

In the temporal network, users depicts nodes while any possible interaction
between users (e.g. answer or comment on others’ questions etc.) represent ties.
They are directed and timestamped, span over 2773 days.

4.1.1 Type of interaction: answers to questions

Stack-overflow questions are long lived, and span over long periods due to the
burst nature of interest in the community. However, we limit our analysis the
temporal motifs with ¢ = [0, 3600] secs. to demonstrate the behavior of human
conversation patterns.

Temporal Dyadic Behavior Figure 12 demonstrates the number of in-
stances observed on the given dyadic instance of temporal motif against the
time they spent to complete. It includes all the possibilities of dyadic behaviors
(M(5,1),M(5,2),M(6,1),M(6,2)) from our temporal motif instances (see Figure
4). They reflect the behavior of answering patterns for any question between
two users.

10
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Figure 11: Dyadic  behavior
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Figure 12: Temporal Ordered Dyads

Figure 10 represents the continuous feedback by an user answering to a
question from another user. It’s clearly noted that such any user tend to answer
the same question until 20-25 minutes frequently, where we see a significant
decline of the time to complete M(6,1) motif in the middle. In fact, this is an
observation by Ubaldi et al. [21] which also conclude that burstiness in human
communication is mostly a link property between two people.

By comparing with the continuous feedback pattern from a user, it’s to hard
to see a reciprocity nature in the order of communication, since the frequency
of motif instances M5 1, Ms 2, Mg > does not dominate over. Nevertheless, it’s
good to see the continuous responses by the party who’s beneficial from getting
an answer to her question, since M(5,2) has the average upper bound (Figure
11). This might reveal the generosity nature of humans.

Temporal Triadic Behavior We partition the possibilities of temporal tri-
angles into two classes by the participation of the originator to close the ordered
triad. As an example, M(1,3) reflects that the originator participates on clos-
ing the triad with a direct edge, and M(3,5) reflects the vice-versa. Figure 13
and 14 demonstrates the behavior of these classes in the given order, which
demonstrate the number of instances observed on the given triadic instance of
temporal motif against the time they spent to complete.

11
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Figure 15: Temporal Ordered Triads

In both classes (Figure 15), we could see that the cyclic triangles (M(2,4)
and M(3,5) have a significant deviation from other patterns. This is a usual
breed to happen in the context of online forums, hence it’s rare to find such
conversations.

The growth over other patterns are identical, when the originator is par-
ticipating on closing the ordered triad (Figure 13), and they reach the same
frequency at the end of the period. The higher growth of M(4,5) in Figure 14,
represents two users tend to participate on an unknown user’s question. This
could be the fact that recent sessions of questions motivate users to involve
on answering in the same context. Because, it’s highly unlikely two users share
another question by answering if they don’t have a previous experience recently.

Non-blocking interaction behavior In an online forum like stack-overflow,
it’s important to have close attention from all the users to have a clear resolvent
for an answer. Such that, one would not wait for another to proceed on the
answers or comments, but try to give the feedback as frequent as possible. We
model this behavior as non-blocking motifs, which is represented by the temporal
motif instances of M(4,1), M(4,3) and M(6,3).

12



Non-blocking communication patterns
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Figure 16: Non-blocking behavior

M(4,3) and M(6,3) are dominant on reaching an identical higher growth on
completing motif instances, while M(4,1) has shown a relative low growth, and
also a decline at the end. When answering questions in the forum, it’s not
common to go back and forth to the same question due to the fact of novelty of
other answers in the thread.

4.1.2 Type of interaction: comments to answers

In stack-overflow forum, any user could clarify, modify or suggest an answer by
proceeding with a thread of comments. We observe that comments are actively
made by users for an answer within a very short interval, which is 5 minutes
approximately. Hence, we limit our analysis to the period ¢ of [0,300] to analyze
the behavior of temporal motifs.

Temporal Dyadic Behavior Figure 19 demonstrates the number of in-
stances observed on the given dyadic instance of temporal motif against the
time they spent to complete. It includes all the possibilities of dyadic behavior
(M(5,1),M(5,2),M(6,1),M(6,2)) from our motif representation (Figure 4). They
reflect the behavior of commenting patterns for any answer between two users.

13
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Figure 18: Dyadic  behavior
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Figure 19: Temporal Ordered Dyads

M(6,1) represents a continuous feedback by an user for other user’s answer,
which is a significant large growth over the life span. This pattern is clearly
dominated over other dyadic patterns (M(5,1),M(5,2),M(6,2)) which require bi-
directional feedback by both users to continue.

It’s interesting to see M(5,1) has relatively higher growth by comparing
with M(5,2),M(6,2), which reflects the normal conversation behavior, where
any comment is blocked until a response by other party.

Temporal Triadic Behavior Figure 22 demonstrates the number of in-

stances observed on the given triadic instance of temporal motif against the
time they spent to complete.

Temporally Ordered Triangles Temporally Ordered Triangles
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Time to complete motifs (seconds) Time to complete motifs (seconds)

Figure 20: Originator participation = Figure 21: Originator participation =
yes no
Figure 22: Temporal Ordered Triads
However, when the originator is participating on closing the triad conver-

sation, it’s interesting to see the sudden gap between the growth of M(1,3)
and M(2,3). While M(1,3) reflects the appearance of causal relationship with a

14



neighbor due to a common neighbor, which might be due to the similar inter-
ested event, e.g. assume there is an answer that both parties are interested on,
hence they are attracted to each other since they comment on same. M(2,3) is
missing that attractive pulse. Also, M(4,5) reflect such attraction in the case
where the originator is not participating on closing the triad conversation.

Non-blocking interaction behavior As we model non-blocking conversa-
tion behavior by the temporal motif instances of M(4,1), M(4,3) and M(6,3),
the latter group is identical in their growth, but M(4,1) has shown a sudden
incline. It can be thought of a diverse nature of normal commenter who try to
cover a range of clarifications.

Non-blocking communication patterns
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>
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60 120 180 240
Time to complete motifs (seconds)

Figure 23: Non-blocking behavior

However, there is a significant change over the patterns of growth between
answers-to-questions and comments-to-answers. While the former shows rela-
tively low growth of the distribution, the latter shows the opposite. We believe
that comments are more frequent to happen in the context and they are not
blocked, while answers are more solid and not frequent.

Also, we could see a significant difference when considering the frequency
distribution of non-blocking motif instance M(4,1). As time to complete such
motif increases, the relative growth is inclined on comments, but not in the
answers (ref M(4,1) at Figures 16 and 23).

15



4.2 Wiki-Talk

Wikipedia has user talk pages for all editors, where they can communicate with
other editors via posts or messages. This dataset represents edits on user talk
pages on Wikipedia [14]. An edge represents that an user edited other users
talk page at a particular time.

Temporal Dyadic Behavior Figure 26 demonstrates the number of in-
stances observed on the given dyadic instance of temporal motif against the
time they spent to complete. It includes all the possibilities of dyadic behavior
(M(5,1),M(5,2),M(6,1),M(6,2)) from our motif representation (Figure 4). They
reflect the behavior of talking patterns between two users via talk pages.

Temporally Ordered Dyads
Temporally Ordered Dyads
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Time to complete motifs (seconds)

Figure  25: Dyadic  behavior

Figure 24: Dyadic behavior Ms ; Mo Moo M
5,1 5,2 6,2

Figure 26: Temporal Ordered Dyads

More frequent edits between two users can be seen initially, but decreases
heavily over time as shown in Figure 26. M(6,1) represent several edits by an
user for other user’s talk page, and it dominates other dyadic patterns by the
frequency levels (Figure 24 and 25). However, we could see a decline growth
of the motif frequency distribution, specially M(6,1). This is due to the nature
of short discussion of between two users that relate with a shared Wikipedia
article edit. The sessions are shortly lived, hence we would not see motifs that
take a long time to complete.

Temporal Triadic Behavior Figure 29 demonstrates the number of in-
stances observed on the given triadic instance of temporal motif against the
time they spent to complete. We analyze how Wikipedia editors form triangles
in the order of edge occurrences. We partition the instances into two classes by
the participation of originator on closing the triad.

16
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Figure 29: Temporal Ordered Triads

As shown by the Figure 29, the distribution of motif frequencies are identical,
and shows an uniform nature after a initial growth. It’s interesting to see when
two users edit a shared talk page, they tend to edit each others’ pages to have
a triangle relationship, since M(1,4) and M(1,3) has higher growth over others
(Figure 27). Further, the originator is attracted more to have direct closing edge
in the triangle formation. Also, we observe a less number of cyclic triangles in
the order of edge occurrences in both classes.

Non-blocking interaction behavior As we model non-blocking conversa-
tion behavior by the temporal motif instances of M(4,1), M(4,3) and M(6,3), we
group them into two classes based on the number of switches that the origina-
tor has to deal with. Such that, M(4,1) has 2-switches while others only have 1
switch to proceed with the non-blocking interaction.
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Figure 30: Non-blocking behavior

We observe a clear dominance of 1 switch non-blocking interactions over
2-switch, where an user doesn’t like to switch the session in the middle. It’s
shown to have a persistent nature of user engagement and associated discussion
in Wikpedia talk page edits. Hence, M(4,1) frequency distribution is shown to
have significant low growth comparing with others.

4.3 Bitcoin

Apart from conversation networks, we try to shed some light on analyzing online
transactions of the digital currency system - Bitcoins. They act in the same way
of monetary transactions in daily lives, but it’s digital and decentralized*. To
exchange Bitcoins in a transaction, any user would be required to have a Bitcoin
address, which is one-to-one relationship with <user,transaction>. A temporal
edge signifies the exchange of Bitcoin from an user to another in a particular
time. Specifically, we analyze 11,971,481 Bitcoin transactions by most active
users, which is extracted from the list of all transactions up to 2013.12.28 [6].

Cyclic Triangles We observe a significant growth of cyclic triangles in the
Bitcoin network as shown in Figure 31 over other networks. Such motif instances
M(3,5) and M(2,4) depict the sending and receiving order of digital money which
form a triangle between three users. Since, transactions have to be balanced
globally, we would anticipate cyclic triangles to be present more in the Bitcoin
network.

4http://www.vo.elte.hu/bitcoin/default.htm
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Cyclic Triangles
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Figure 31: Cyclic triangles

Higher-order organization Table 5 demonstrates the basic results of motif
spectral clustering method introduced at section 3.2, separately for each of the
14 motif instances ( see Figure 8). This summarizes the size of largest connected
component which is available for spectral clustering, the size of cluster with the
lowest motif conductance and eigenvalue associated with. As an example, given
the motif M1, there is a size 115 of connected component available to partition,
and we found the best cluster (S) with the lowest motif conductance 0.135417.
Please note that we induce the associated static graph from the last temporal
version for the analysis of higher order organization.

From the Table 5, we could observe that an near optimal clustering with
the lowest motif conductance is shown at the motif M12 when partitioning the
largest connected component. Due to the induction of static relations from
the temporal Bitcoin transactions for this analysis, we can not derive the exact
pattern in the order, but we could sat that’s a representation of an unbalance
triad with regards to money exchange.

Motif | Largest CC size | Cluster size | Motif conductance in largest CC | Eigenvalue
M1 115 32 0.135417 0.103735
M2 264 4 0.200000 0.096393
M3 317 4 0.125000 0.105369
M4 123 39 0.114650 0.076408
M5 717 3 0.250000 0.190097
M6 389 6 0.200000 0.188391
M7 491 5 0.142857 0.077313
M8 1146 5 0.142857 0.120632
M9 1177 6 0.173913 0.114873
M10 884 5 0.090909 0.061481
Mi11 1159 5 0.200000 0.185293
M13 548 105 0.113835 0.083970
bifan 691 3 0.333333 0.333140

Table 5: Higher-order organization

It’s interesting to note that cycle triangles (M1) would generate more weak
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clusters by size in the static induction graph (Figure 4.3).
generates 551 clusters across Bitcoin users. However, M11, M8 and M9 make
large communities by size, which represents different broker types in a triad

money exchange.

Distribution of clusters by motifs
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4.4 CollegeMsg - UClIrvine

This temporal dataset includes the interactions performed by UCIrvine college
students in a local social network via private messages. An edge (u, v, t) means
that student u sent a private message to user v at time t [9].

Motif i) 2) 3) 1) 5) 6)

M(1, | 67,043 | 39,518 | 1,460 | 1,214 | 64,883 | 85,581
M(2, | 49,155 | 34,481 | 1,319 | 1,062 | 50,309 | 59,903
M(3, | 39,830 | 43,391 | 65,000 | 72,227 | 1,086 | 1,400
M(4, | 81,302 | 39,830 | 118,003 | 63,778 | 1,446 | 1,423
M(5, | 98,400 | 82,667 | 52,491 | 62,484 | 55,027 | 64,921
M(6, | 147,417 | 85,000 | 104,530 | 56,718 | 59,127 | 86,686

Table 6: Motif counts:
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Motif 1) 2) 3) 1) 5) 6)
M(1, | 126,687 | 75,313 | 2,666 | 2,050 | 132,211 | 184,134
M(2, | 92,042 | 64,313 | 2,309 | 1,655 | 109,695 | 125,020
M(3, | 79,491 | 85,000 | 134,890 | 157,501 | 1,938 | 2,503

M(4, | 161,035 | 79,491 | 276,981 | 136,792 | 2,595 | 2,437
M(
M(

5, | 170,112 | 149,084 | 111,087 | 132,017 | 113,096 | 133,772
6, | 278,779 | 156,065 | 244,525 | 129,352 | 131,504 | 188,249

Table 7: Motif counts: 6 = 1 hour

Table 6 and 7 present the counts of temporal motifs, which complete within
the duration of 30 and 60 minutes consecutively. M(4,1) depicts a significant
growth over 30 - 60 minutes to complete the given structure, which highlights
the preference for recent conversation to proceed with between two students.

Non-blocking communication patterns
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Figure 32: Non-blocking behavior

The non-blocking behavior is identical to WikiTalk as it represents a gen-
eral conversation behavior, but it’s interesting to see the continuous growth by
M(4,3) and M(6,3), where the originator has only 1-switch between the conver-
sation with two parties. It’s more likely students like to maintain a conversation
without switching to other, and usually it’s the most recent conversation.



Motif | Largest CC size | Cluster size | Motif conductance in largest CC | Eigenvalue

M2 564 8 0.285714 0.190130
M3 872 3 0.250000 0.168959
M4 679 6 0.090909 0.067224
M5 716 5 0.142857 0.103800
M6 702 3 0.200000 0.158960
M1 676 4 0.166667 0.134672
M8 1704 8 0.306306 0.210825
M9 1702 808 0.342365 0.427103
M10 1319 5 0.285714 0.210808
M11 1837 858 0.365982 0.489463
M12 1325 594 0.429393 0.498692
M13 1264 626 0.312469 0.475830
bifan 1030 281 0.328400 0.371212

Table 8: Higher-order organization

As you could observe, the triangle (M1) gives the optimal spectral clustering
out of other motifs in Table 8. But it gives the maximum number of clusters,
making more weak communities by the size (M1 - 1800 Figure 33). This rep-
resents the transitivity nature of forming communities across college students.
Hence, they would not lead to form larger communities, but more likely to be
remained as small groups.

Figure 33 shows that M11 generates only 64 clusters by having around 30
1899
( 64
represent a shared broker who intermediate the communication in a triad, such
that making less number of communities, but they are more likely to be strong

by size.

) students forming communities in average. In general, M11, M8 and M9

22



Distribution of clusters by motifs
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Figure 33: Distribution of clusters by motifs

4.5 Ground-Truth communities

We try to evaluate the spectral clustering performed using motif conductance
with ground-truth communities, Yang et al. [25] detect that community defini-
tions related with the classes of edge conductance and triad-participation-ratio,
consistently give the best performance in identifying ground-truth communities.
Here, we extend their experiments to proceed with motif conductance at several
static networks.

4.5.1 Amazon product co-purchase

Nodes in the network represent Amazon products that were available for shop-
ping until 02.03.2003, an edge is defined as following: ”If a product i is frequently
co-purchased with product j, the graph contains a directed edge from i to j. Each
product category provided by Amazon defines each ground-truth community.”
[9].

Motif | Largest CC size | Cluster size | Motif conductance in largest CC
M5 189145 504 0.000342

M8 300717 170 0.000529

M10 301727 44 0.000830

Table 9: Higher-order organization
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Distribution of clusters by motifs
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We could see that the largest connected component to partition lies at motif
M9 (Table 9), which also depicts the lowest motif conductance. However, M5
based spectral clustering is identical with the ground-truth community parti-
tions by the number of clusters.

0.3
0.9
> >
= = 024
2 067 2
@ @
(] (m)
0.34 0.14
0.01 L 0.0+
0 10 20 30 40 50 0 10 20 30 40 50
Size of the cluster Size of the cluster
Figure 34: Mb Figure 35: Ground-Truth

Figure 36: Density distribution of spectral clustering and ground truth
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Figure 36 shows how the density of clusters varies with the size of the cluster,
generally it measures the spread of clusters by size. Density distributions are
used to compare M5 motif spectral clustering with ground truth. We can observe
an identical shape, but the density varies a lot with the size of cluster.

4.5.2 DBLP co-auhorship network

DBLP is a repository that maintain research papers listed in computer science.
”We construct a co-authorship network where two authors are connected if they
publish at least one paper together. Publication venue, e.g, journal or confer-
ence, defines an individual ground-truth community; authors who published to
a certain journal or conference form a community” [9].

Motif | Largest CC size | Cluster size | Motif conductance in largest CC

M8 297216 20 0.003021
M9 306243 25 0.008850
M10 133090 28 0.019608

Table 10: Higher-order organization
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Figure 37: Distribution of clusters by motifs

Figure 37 shows that the optimal number of ground-truth communities is
within the range of clusters produced by M9 and MS8. However, we couldn’t
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see any identical distribution on cluster frequencies by size across M8, M9, and

ground-truth communities (Figure 41).
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Figure 41: Density distribution of spectral clustering and ground truth
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5 Related Work

5.1 Information Diffusion

Zhao et al. [26] discuss the possibility of inferencing information propagation
and behavior patterns of social networks (specifically communication networks.)
through the lenses of temporal motifs. It’s assumed that the amount of informa-
tion is proportional to the duration of the interaction, and adjacent interactions
between a common user tend to propagate the same set of information. By
annotating temporal attributes, both the lifespan and the frequency of patterns
of interactions were measured.

Event driven nature of communication networks is modeled by analyzing
the frequency of temporal motifs in different contexts, range from call logs, to
facebook wall-posts. It’s been observed that the communication behavior is
common in different environments, by having a shared temporal motif instances
(e.g star and chain motifs). But however, the distribution of temporal mo-
tifs’ frequencies is not identical, by generating different patterns of information
propagation which are dependent on the (a)synchronous behavior of interac-
tions. Also, the speed and amount of information is correlated, and dependent
on the individual’s ego.

Liu et al. [10], define the notion of stochastic temporal network motif
(STNM) based on first-order markov chain to study the patterns of commu-
nication in a mobile network. Further, it’s been extended to characterize the
hidden communication patterns by learning a discrete markov chain. The major
contribution is the proposal of probabilistic approach to infer the evolution of
temporal motifs.

5.2 Community

Creusefond et al. [3] study the structure of communities via temporal motifs,
specially in networks that have short-lived interactions. They are motivated by
the assumption that the nature of communities shared by any two users could be
depicted by the nature of their interaction. From the experiments, they observe
star and chain motif instances are likely to be inside explicit communities, while
spams, ping-pong and triangles could occur in cross communities. Hence, the
diffusion of information over global network structure could be supported by
former instances that interact over cross communities.

Xuan et al. [24] use temporal motifs to reveal collaboration patterns of a
software development environment. Specifically, they study the composition of
two people and an artifact in task-oriented social networks. Hence, they try to
reveal how two people interact to achieve a shared task by monitoring tempo-
ral collaborations and communications. They observe the number of temporal
motifs is larger than the chance model most of time in task-oriented social net-
work. Further, they infer about the team structure, and conclude that central
individuals and the more cohesive teams are more productive.
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6 Discussion

Motifs are initially used to define the patterns of interest in static complex
networks (e.g biological network), thus to study the functional behavior of local
structures [11]. With the introduction of equivalence set of isomorphic instances,
they have been utilized to reason about the universality classes of network.

Definitions: When defining motif instances in temporal networks, we have to
concern about the generalized concept of induced subgraphs and isomorphism
with the time dimension. We have seen the constraints introduced at temporal
graphs in the definition 2.1, to have a configuration model of § —temporal motifs.
It’s assumed to have connected subgraphs, which is active within a § time win-
dow. The analysis of unconnected subgraph patterns is out of the study, where
we consider any two events are causally related within a short time interval §
to be represented in a valid motif instance. We adopt Goldilocks approach [24]
to have a representative ¢, which is not too small, since responding to an event
takes time; and not too large, to avoid the expired associations. Thus, we vary
J, as a small sized sliding window (usually 60 seconds), and produce fine-grained
results.

By the definition 2.2, it would give us an exponential number of subgraphs,
which also lead to have constraints on computation. Also, this vast space of
motif structures, might be quite misleading since the choice of the configuration
model is dependent on the context of analyzed graph, and hard to interpret
results [8]. Such that, we control the motif types by k; number of nodes, and g;
number of edges, but allow to have a version of multi-graph. It’s assumed that
the multiplexity of ties has been achieved by associated timestamps of edges,
which could be considered as discrete set of types.

Also, we try to conceptualize the notion of brokerage positions with respect
to temporal motifs. Multigraph automorphism (definition 3.3) is studied to
define the equivalence classes of such positions, which could be extended into
the study of temporal motif degree (section 3.4). Further work including solid
definitions, development of new tools etc. is required in this section.

Higher order organization of a network is only considered over static snap-
shots that unifies over motif analysis and network partitioning. As Benson et al.
[2] suggest, motif-based clustering could be used to find out the motif that orga-
nize the network structurally. This study is an extended version of hypergraph
partitioning, where they interpret motifs as hyperedges in a graph.

Impact: Also, we present our results mostly derived from the frequency of
motif appearances over different activation window. Overall, they could be
used to find the impact on human communication behavior which is attributed
by two universal properties - burstiness and causality [7]. However, we observe
that motifs which interpret causal events are more common. Such patterns of
causality is existed over similar distributions of motifs over similar networks
(e.g. different causality patterns wrt communication vs. transaction).

In our study, we try to evaluate motif-based clustering with some networks
which have predefined ground-theory community structures. Our benchmark
parameters include the number of obtained communities, and the density distri-
bution of community sizes. However, the results are not up to the expectations,
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where density distributions in both of our examples (section 4.5) don’t align
with ground-truth. We might argue that the structural position of a node is
highly effected by some network forces of homophily, reciprocity etc. In that
sense, motif-based clustering does not account any of node’s attributes to define
the force. This pay-off might be represented by the distance between obtained
distributions of communities over ground-truth and spectral clustering.

Computational complexity: We use snap for our analysis including tem-
poral motif counts and higher order organization due it’s scalability. Along
with the optimized algorithms, we were capable to process more than 16 million
nodes (e.g. StackOverflow), in it’s temporal version of edges. Snap is capable
to model the temporal graphs in a data structure, modeled with multi-graphs.

Extensions: As an extension, we would like to consolidate our study using
the concept of null models, to better claim results using null hypothesis. It
would enable us to carefully examine the hidden causality in the network.

Also, the definition of temporal motifs could be generalized to represent the
simultaneous events happening around in the network, in fact, such definition
would degenerate to the definition 2.2, but edges are attributed by the number of
simultaneous events. Hence, several modifications are required for equivalence
classes. We have done a basic survey on the context of synchronous behaviors,
which is presented optionally in the Appendix A.

However we observe that granularity levels of temporal and structural dimen-
sions would vary over the evolution of the network. Evolution of a population
was detected using traits, and is dependent on the strength of such evolation
force (i.e. growth rate, fitness) [5]. An interesting question would be to claim
about the fitness of the population and the contribution of different traits to
the evolution of the network through the study of temporal motifs.
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Appendix A - Related work on Synchronicity

Synchronous trading has been evaluated in the context of financial stock mar-
ket by taking stock selection of 66 day traders [17]. The results suggest the tim-
ing is a key factor that drives the decision of traders in highly critical financial
systems. Also, the level of uncertainty would let the synchronous behavior to be
emerged among the traders. Finally, they conclude synchronous trading does
not appear due to co-ordination, but it helps individuals to perform better in
the context.

Another way of thinking about dynamic behavior is the collective reaction
of a community for an external event, such that explains about the individuals’
cognitive reactive process aggregated in a social network. Romero et al. [16]
examine a social network under stress to observe that a structure of a network is
diagnostic of the sudden execution of new events, and it can be used to predict
behavioral patterns in a glance.

It’s been shown that collective intelligence of a community could eradicate
human errors of individual decisions by making use of social information. As a
downside, this might lead to have a lack of responsiveness for rapidly changing
information streams, while mostly relying on synchronous behavior of others
[20].

From a longitudinal study over 1000 university students, Sekara et al. [18]
observe that individuals participate in subsequent gatherings may have seen
repeatedly as a core subset. Thus, they represent a dynamic social network
with strong temporal and spatial regularity.
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